cell pair
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 22)

H-INDEX

20
(FIVE YEARS 3)

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 149
Author(s):  
Beom-Seok Kim ◽  
Jin-Soo Park

In this study, three different environmentally friendly fouling mitigation technologies are suggested and are investigated in reverse electrodialysis (RED) to develop the most appropriate fouling mitigation technology for RED: applying direct current, flowing a solution with high salt concentration, and periodically switching river and seawater streams in RED. The quantitative level of anion exchange membrane fouling mitigation is evaluated in terms of the power density and the amount of power generation of RED. Applying a direct current electric field with higher voltage than 8 V was not allowed for fouling mitigation in the two-cell-pair bench RED stack due to decomposition of the redox couple. In comparison of the RED operations with two different fouling mitigation methods using firstly 40-min power generation during in-operation and 40-min fouling mitigation stage during out-of-operation as a cycle for 80 min and secondly 80-min forward power generation and 80-min backward power generation as two cycles. It was found that, over five cycles, the amount of the RED power generation using the former fouling mitigation method is 1.7 times higher than RED power generation using the latter fouling mitigation method.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hao Zhang ◽  
Zeyu Wang ◽  
Ziyu Dai ◽  
Wantao Wu ◽  
Hui Cao ◽  
...  

Tumor-infiltrating immune cells (TIICs) have become an important source of markers for predicting the clinical outcomes of cancer patients. However, measurements of cellular heterogeneity vary due to the frequently updated reference genomes and gene annotations. In this study, we systematically collected and evaluated the infiltration pattern of 65 immune cells. We constructed the Immune Cell Pair (ICP) score based on the cell pair algorithm in 3,715 samples and across 12 independent cancer types, among which, the ICP score from six cancer types was further validated in 2,228 GEO samples. An extensive tumorigenic and immunogenomic analysis was subsequently conducted. As a result, the ICP score showed a robust reliability and efficacy in predicting the survival of patients with gliomas, in pan-cancer samples, and six independent cancer types. Notably, the ICP score was correlated with the genomic alteration features in gliomas. Moreover, the ICP score exhibited a remarkable association with multiple immunomodulators that could potentially mediate immune escape. Finally, the ICP score predicted immunotherapeutic responses with a high sensitivity, allowing a useful tool for predicting the overall survival and guiding immunotherapy for cancer patients.


Author(s):  
Mei Li ◽  
Yiwei Wang ◽  
Jiabin Guo ◽  
Xiaoliang Li ◽  
Pengcheng Guo

Abstract This paper presents an experimental study on the performance of a RED stack for SELEMION, ASTOM and FUJI membranes with the cell pair number from 3 to 15 and flow rate from 5 to 60 L/h over a wide solution concentration range from 1 to 120 g/L. DC and AC measurements are employed to identify quantatively the contribution of ohmic and non-ohmic resistances to the stack resistance and then, the power output is predicted theoretically. The results show that the ohmic resistance dominates in the stack resistance and accounts for about 90%. The factors such as the membrane type, cell pair, solution concentration and flow rate have a considerable impact on power generation process of RED. Especially, simultaneous increasing the HC and LC solution concentrations is more conducive to suppressing the concentration polarization when compared with increasing LC solution concentration alone. Although the concentration polarization maintains declining with the increase in flow rate, the flow rate should not be too large in order to harvest the highest power output by reason of serious tangential flow at higher flow rates. The optimal performance of RED stack is obtained when SELEMION membranes are used with cell pairs of 5, HC-LC solution concentration of 120-4 g/L and feed flow rate of 20 L/h.


2021 ◽  
Author(s):  
Eliott R J Levy ◽  
Eun Hye Park ◽  
William T Redman ◽  
André A Fenton

Hippocampus CA1 place cells express a spatial neural code by discharging action potentials in cell-specific locations (′place fields′), but their discharge timing is also coordinated by multiple mechanisms, suggesting an alternative ′ensemble cofiring′ neural code, potentially distinct from place fields. We compare the importance of these distinct information representation schemes for encoding environments. Using miniature microscopes, we recorded the ensemble activity of mouse CA1 principal neurons expressing GCaMP6f across a multi-week experience of two distinct environments. We find that both place fields and ensemble coactivity relationships are similarly reliable within environments and distinctive between environments. Decoding the environment from cell-pair coactivity relationships is effective and improves after removing cell-specific place tuning. Ensemble decoding relies most crucially on anti-coactive cell pairs distributed across CA1 and is independent of place cell firing fields. We conclude that ensemble cofiring relationships constitute an advantageous neural code for environmental space, independent of place fields.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1336
Author(s):  
Caterina Catalano ◽  
Loredana Abbate ◽  
Antonio Motisi ◽  
Dalila Crucitti ◽  
Vincenzo Cangelosi ◽  
...  

Polyploidy plays an important role in plant adaptation to biotic and abiotic stresses. Alterations of the ploidy in grapevine plants regenerated via somatic embryogenesis (SE) may provide a source of genetic variability useful for the improvement of agronomic characteristics of crops. In the grapevine, the SE induction process may cause ploidy changes without alterations in DNA profile. In the present research, tetraploid plants were observed for 9.3% of ‘Frappato’ grapevine somatic embryos regenerated in medium supplemented with the growth regulators β-naphthoxyacetic acid (10 µM) and N6-benzylaminopurine (4.4 µM). Autotetraploid plants regenerated via SE without detectable changes in the DNA profiles were transferred in field conditions to analyze the effect of polyploidization. Different ploidy levels induced several anatomical and morphological changes of the shoots and mature leaves. Alterations have been also observed in stomata. The length and width of stomata of tetraploid leaves were 39.9 and 18.6% higher than diploids, respectively. The chloroplast number per guard cell pair was higher (5.2%) in tetraploid leaves. On the contrary, the stomatal index was markedly decreased (12%) in tetraploid leaves. The observed morphological alterations might be useful traits for breeding of grapevine varieties in a changing environment.


2021 ◽  
Vol 118 (12) ◽  
pp. e2011815118
Author(s):  
Jugroop Singh ◽  
Aldwin Pagulayan ◽  
Brian A. Camley ◽  
Amrinder S. Nain

Contact inhibition of locomotion (CIL), in which cells repolarize and move away from contact, is now established as a fundamental driving force in development, repair, and disease biology. Much of what we know of CIL stems from studies on two-dimensional (2D) substrates that do not provide an essential biophysical cue—the curvature of extracellular matrix fibers. We discover rules controlling outcomes of cell–cell collisions on suspended nanofibers and show them to be profoundly different from the stereotyped CIL behavior on 2D substrates. Two approaching cells attached to a single fiber do not repolarize upon contact but rather usually migrate past one another. Fiber geometry modulates this behavior; when cells attach to two fibers, reducing their freedom to reorient, only one cell repolarizes on contact, leading to the cell pair migrating as a single unit. CIL outcomes also change when one cell has recently divided and moves with high speed—cells more frequently walk past each other. Our computational model of CIL in fiber geometries reproduces the core qualitative results of the experiments robustly to model parameters. Our model shows that the increased speed of postdivision cells may be sufficient to explain their increased walk-past rate. We also identify cell–cell adhesion as a key mediator of collision outcomes. Our results suggest that characterizing cell–cell interactions on flat substrates, channels, or micropatterns is not sufficient to predict interactions in a matrix—the geometry of the fiber can generate entirely new behaviors.


2021 ◽  
Author(s):  
Tao Peng ◽  
Gregory M. Chen ◽  
Kai Tan

ABSTRACTSingle-cell omics assays have become essential tools for identifying and characterizing cell types and states of complex tissues. While each single-modality assay reveals distinctive features about the sequenced cells, true multi-omics assays are still in early stage of development. This notion signifies the importance of computationally integrating single-cell omics data that are conducted on various samples across various modalities. In addition, the advent of multiplexed molecular imaging assays has given rise to a need for computational methods for integrative analysis of single-cell imaging and omics data. Here, we present GLUER (inteGrative anaLysis of mUlti-omics at single-cEll Resolution), a flexible tool for integration of single-cell multi-omics data and imaging data. Using multiple true multi-omics data sets as the ground truth, we demonstrate that GLUER achieved significant improvement over existing methods in terms of the accuracy of matching cells across different data modalities resulting in ameliorating downstream analyses such as clustering and trajectory inference. We further demonstrate the broad utility of GLUER for integrating single-cell transcriptomics data with imaging-based spatial proteomics and transcriptomics data. Finally, we extend GLUER to leverage true cell-pair labels when available in true multi-omics data, and show that this approach improves co-embedding and clustering results. With the rapid accumulation of single-cell multi-omics and imaging data, integrated data holds the promise of furthering our understanding of the role of heterogeneity in development and disease.


2021 ◽  
Vol 38 ◽  
Author(s):  
Xiwu Zhao ◽  
Kwoon Y. Wong

Abstract Intrinsically photosensitive retinal ganglion cells (ipRGCs) signal not only anterogradely to drive behavioral responses, but also retrogradely to some amacrine interneurons to modulate retinal physiology. We previously found that all displaced amacrine cells with spiking, tonic excitatory photoresponses receive gap-junction input from ipRGCs, but the connectivity patterns and functional roles of ipRGC-amacrine coupling remained largely unknown. Here, we injected PoPro1 fluorescent tracer into all six types of mouse ipRGCs to identify coupled amacrine cells, and analyzed the latter’s morphological and electrophysiological properties. We also examined how genetically disrupting ipRGC-amacrine coupling affected ipRGC photoresponses. Results showed that ipRGCs couple with not just ON- and ON/OFF-stratified amacrine cells in the ganglion-cell layer as previously reported, but also OFF-stratified amacrine cells in both ganglion-cell and inner nuclear layers. M1- and M3-type ipRGCs couple mainly with ON/OFF-stratified amacrine cells, whereas the other ipRGC types couple almost exclusively with ON-stratified ones. ipRGCs transmit melanopsin-based light responses to at least 93% of the coupled amacrine cells. Some of the ON-stratifying ipRGC-coupled amacrine cells exhibit transient hyperpolarizing light responses. We detected bidirectional electrical transmission between an ipRGC and a coupled amacrine cell, although transmission was asymmetric for this particular cell pair, favoring the ipRGC-to-amacrine direction. We also observed electrical transmission between two amacrine cells coupled to the same ipRGC. In both scenarios of coupling, the coupled cells often spiked synchronously. While ipRGC-amacrine coupling somewhat reduces the peak firing rates of ipRGCs’ intrinsic melanopsin-based photoresponses, it renders these responses more sustained and longer-lasting. In summary, ipRGCs’ gap junctional network involves more amacrine cell types and plays more roles than previously appreciated.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4998
Author(s):  
Sangpil Yoon ◽  
Yijia Pan ◽  
Kirk Shung ◽  
Yingxiao Wang

Fluorescence resonance energy transfer (FRET)-based biosensors have advanced live cell imaging by dynamically visualizing molecular events with high temporal resolution. FRET-based biosensors with spectrally distinct fluorophore pairs provide clear contrast between cells during dual FRET live cell imaging. Here, we have developed a new FRET-based Ca2+ biosensor using EGFP and FusionRed fluorophores (FRET-GFPRed). Using different filter settings, the developed biosensor can be differentiated from a typical FRET-based Ca2+ biosensor with ECFP and YPet (YC3.6 FRET Ca2+ biosensor, FRET-CFPYPet). A high-frequency ultrasound (HFU) with a carrier frequency of 150 MHz can target a subcellular region due to its tight focus smaller than 10 µm. Therefore, HFU offers a new single cell stimulations approach for FRET live cell imaging with precise spatial resolution and repeated stimulation for longitudinal studies. Furthermore, the single cell level intracellular delivery of a desired FRET-based biosensor into target cells using HFU enables us to perform dual FRET imaging of a cell pair. We show that a cell pair is defined by sequential intracellular delivery of the developed FRET-GFPRed and FRET-CFPYPet into two target cells using HFU. We demonstrate that a FRET-GFPRed exhibits consistent 10–15% FRET response under typical ionomycin stimulation as well as under a new stimulation strategy with HFU.


Sign in / Sign up

Export Citation Format

Share Document