scholarly journals Identification of meteorological factors affecting migration of wild birds into miyazaki and its relation to circulation of highly pathogenic avian influenza virus

2018 ◽  
Author(s):  
Genki Arikawa ◽  
Maiku Abe ◽  
Mai Thi Ngan ◽  
Shuya Mitoma ◽  
Kosuke Notsu ◽  
...  

AbstractAim of our study is to establish models for predicting the number of migratory wild birds based on the meteorological data. From 136 species of wild birds, which have been observed at Futatsudate in Miyazaki, Japan, from 2008 to 2016, we selected the potential high-risk species, which can introduce highly pathogenic avian influenza (HPAI) virus into Miyazaki; we defined them as “risky birds”. We then performed regression analysis to model the relationship between the number of risky birds and meteorological data. We selected 10 wild bird species as risky birds: Mallard (Anas platyrhynchos), Northern pintail (Anas acuta), Eurasian wigeon (Anas penelope), Eurasian teal (Anas crecca), Common pochard (Aythya ferina), Eurasian coot (Fulica atra), Northern shoveler (Anas clypeata), Common shelduck (Tadorna tadorna), Tufted duck (Aythya fuligula), and Herring gull (Larus argentatus). We succeeded in identifying five meteorological factors associated with their migration: station pressure, mean value of global solar radiation, minimum of daily maximum temperature, days with thundering, and days with daily hours of daylight under 0.1 h. We could establish some models for predicting the number of risky birds based only on the published meteorological data, without manual counting. Dynamics of migratory wild birds has relevance to the risk of HPAI outbreak, so our data could contribute to save the cost and time in strengthening preventive measures against the epidemics.

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Knut Madslien ◽  
Torfinn Moldal ◽  
Britt Gjerset ◽  
Sveinn Gudmundsson ◽  
Arne Follestad ◽  
...  

Abstract Background Several outbreaks of highly pathogenic avian influenza (HPAI) caused by influenza A virus of subtype H5N8 have been reported in wild birds and poultry in Europe during autumn 2020. Norway is one of the few countries in Europe that had not previously detected HPAI virus, despite widespread active monitoring of both domestic and wild birds since 2005. Results We report detection of HPAI virus subtype H5N8 in a wild pink-footed goose (Anser brachyrhynchus), and several other geese, ducks and a gull, from south-western Norway in November and December 2020. Despite previous reports of low pathogenic avian influenza (LPAI), this constitutes the first detections of HPAI in Norway. Conclusions The mode of introduction is unclear, but a northward migration of infected geese or gulls from Denmark or the Netherlands during the autumn of 2020 is currently our main hypothesis for the introduction of HPAI to Norway. The presence of HPAI in wild birds constitutes a new, and ongoing, threat to the Norwegian poultry industry, and compliance with the improved biosecurity measures on poultry farms should therefore be ensured. [MK1]Finally, although HPAI of subtype H5N8 has been reported to have very low zoonotic potential, this is a reminder that HPAI with greater zoonotic potential in wild birds may pose a threat in the future. [MK1]Updated with a sentence emphasizing the risk HPAI pose to poultry farms, both in the Abstract and in the Conclusion-section in main text, as suggested by Reviewer 1 (#7).


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 212
Author(s):  
Josanne H. Verhagen ◽  
Ron A. M. Fouchier ◽  
Nicola Lewis

Highly pathogenic avian influenza (HPAI) outbreaks in wild birds and poultry are no longer a rare phenomenon in Europe. In the past 15 years, HPAI outbreaks—in particular those caused by H5 viruses derived from the A/Goose/Guangdong/1/1996 lineage that emerged in southeast Asia in 1996—have been occuring with increasing frequency in Europe. Between 2005 and 2020, at least ten HPAI H5 incursions were identified in Europe resulting in mass mortalities among poultry and wild birds. Until 2009, the HPAI H5 virus outbreaks in Europe were caused by HPAI H5N1 clade 2.2 viruses, while from 2014 onwards HPAI H5 clade 2.3.4.4 viruses dominated outbreaks, with abundant genetic reassortments yielding subtypes H5N1, H5N2, H5N3, H5N4, H5N5, H5N6 and H5N8. The majority of HPAI H5 virus detections in wild and domestic birds within Europe coincide with southwest/westward fall migration and large local waterbird aggregations during wintering. In this review we provide an overview of HPAI H5 virus epidemiology, ecology and evolution at the interface between poultry and wild birds based on 15 years of avian influenza virus surveillance in Europe, and assess future directions for HPAI virus research and surveillance, including the integration of whole genome sequencing, host identification and avian ecology into risk-based surveillance and analyses.


2015 ◽  
Vol 21 (5) ◽  
pp. 775-780 ◽  
Author(s):  
Hye-Ryoung Kim ◽  
Yong-Kuk Kwon ◽  
Il Jang ◽  
Youn-Jeong Lee ◽  
Hyun-Mi Kang ◽  
...  

2021 ◽  
Vol 27 (11) ◽  
pp. 2940-2943
Author(s):  
Guimei He ◽  
Le Ming ◽  
Xiang Li ◽  
Yuhe Song ◽  
Ling Tang ◽  
...  

2017 ◽  
Vol 23 (12) ◽  
pp. 2050-2054 ◽  
Author(s):  
Erik Kleyheeg ◽  
Roy Slaterus ◽  
Rogier Bodewes ◽  
Jolianne M. Rijks ◽  
Marcel A.H. Spierenburg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document