scholarly journals Engineered variants provide new insight into the structural properties important for activity of the highly dynamic, trimeric protein disulfide isomerase, PmScsC

2018 ◽  
Author(s):  
Emily J. Furlong ◽  
Fabian Kurth ◽  
Lakshmanane Premkumar ◽  
Andrew E. Whitten ◽  
Jennifer L. Martin

AbstractSuppressor of copper sensitivity protein C from Proteus mirabilis (PmScsC) is a homotrimeric disulfide isomerase that plays a role in copper tolerance – a key virulence trait of the uropathogen. Each protomer of the enzyme has an N-terminal trimerisation stem (59 residues) containing a flexible linker (11 residues) connected to a thioredoxin-fold-containing catalytic domain (163 residues). Here, we characterise two PmScsC variants, PmScsCΔN and PmScsCΔLinker. PmScsCΔN, is an N-terminally truncated form of the protomer with two helices of the trimerisation stem removed, generating a protein with dithiol oxidase rather than disulfide isomerase activity. The crystal structure of PmScsCΔN reported here reveals – as expected – a monomer that is structurally similar to the catalytic domain of native PmScsC. The second variant PmScsCΔLinker was designed to remove the 11 amino acid linker and we show that it generates a protein that has neither disulfide isomerase nor dithiol oxidase activity. The crystal structure of PmScsCΔLinker reveals a trimeric arrangement, with the catalytic domains packed together very closely. Small angle X-ray scattering analysis found that native PmScsC is predominantly trimeric in solution even at low concentration, whereas PmScsCΔLinker exists as an equilibrium between monomeric, dimeric and trimeric states, with the monomeric form dominating at low concentrations. These findings increase our understanding of disulfide isomerase activity, showing how (i) oligomerisation, (ii) spacing between, and (iii) dynamic motion of, catalytic domains in PmScsC all contribute to its native function.


2019 ◽  
Vol 75 (3) ◽  
pp. 296-307
Author(s):  
Emily J. Furlong ◽  
Fabian Kurth ◽  
Lakshmanane Premkumar ◽  
Andrew E. Whitten ◽  
Jennifer L. Martin

Suppressor of copper sensitivity protein C from Proteus mirabilis (PmScsC) is a homotrimeric disulfide isomerase that plays a role in copper tolerance, which is a key virulence trait of this uropathogen. Each protomer of the enzyme has an N-terminal trimerization stem (59 residues) containing a flexible linker (11 residues) connected to a thioredoxin-fold-containing catalytic domain (163 residues). Here, two PmScsC variants, PmScsCΔN and PmScsCΔLinker, are characterized. PmScsCΔN is an N-terminally truncated form of the protomer with two helices of the trimerization stem removed, generating a protein with dithiol oxidase rather than disulfide isomerase activity. The crystal structure of PmScsCΔN reported here reveals, as expected, a monomer that is structurally similar to the catalytic domain of native PmScsC. The second variant, PmScsCΔLinker, was designed to remove the 11-amino-acid linker, and it is shown that it generates a protein that has neither disulfide isomerase nor dithiol oxidase activity. The crystal structure of PmScsCΔLinker reveals a trimeric arrangement, with the catalytic domains packed together very closely. Small-angle X-ray scattering analysis found that native PmScsC is predominantly trimeric in solution even at low concentrations, whereas PmScsCΔLinker exists as an equilibrium between monomeric, dimeric and trimeric states, with the monomeric form dominating at low concentrations. These findings increase the understanding of disulfide isomerase activity, showing how (i) oligomerization, (ii) the spacing between and (iii) the dynamic motion of catalytic domains in PmScsC all contribute to its native function.



Blood ◽  
1992 ◽  
Vol 79 (9) ◽  
pp. 2226-2228 ◽  
Author(s):  
K Chen ◽  
Y Lin ◽  
TC Detwiler

Abstract The release of protein disulfide isomerase by activated platelets was hypothesized on the basis of reported intermolecular and intramolecular thiol-disulfide exchange and disulfide reduction involving released thrombospondin in the supernatant solution of activated platelets (Danishefsky, Alexander, Detwiler: Biochemistry, 23:4984, 1984; Speziale, Detwiler: J Biol Chem, 265:17859, 1990; Speziale, Detwiler: Arch Biochem Biophys 286:546, 1991). Protein disulfide isomerase activity, measured by catalysis of the renaturation of ribonuclease inactivated by randomization of disulfide bonds, was detected in the supernatant solution after platelet activation. The activity was inhibited by peptides known to inhibit protein disulfide isomerase; the peptides also inhibited formation of disulfide-linked thrombospondin- thrombin complexes. The reaction catalyzed by the supernatant solution showed a pH dependence distinct from that of the uncatalyzed reaction. The activity was excluded by a 50-Kd dialysis membrane, and it was eluted in the void volume of a gel-filtration column, indicating that it was associated with a macromolecule. The activity was not removed by centrifugation at 100,000 g for 150 minutes indicating that it was not associated with membrane microvesicles. Possible functions for the release of protein disulfide isomerase by activated platelets are discussed.



2014 ◽  
Vol 27 (2) ◽  
pp. 99-105 ◽  
Author(s):  
Kento Makino ◽  
Kosaku Okuda ◽  
Eisuke Sugino ◽  
Tadashi Nishiya ◽  
Takashi Toyama ◽  
...  


Blood ◽  
1992 ◽  
Vol 79 (9) ◽  
pp. 2226-2228 ◽  
Author(s):  
K Chen ◽  
Y Lin ◽  
TC Detwiler

The release of protein disulfide isomerase by activated platelets was hypothesized on the basis of reported intermolecular and intramolecular thiol-disulfide exchange and disulfide reduction involving released thrombospondin in the supernatant solution of activated platelets (Danishefsky, Alexander, Detwiler: Biochemistry, 23:4984, 1984; Speziale, Detwiler: J Biol Chem, 265:17859, 1990; Speziale, Detwiler: Arch Biochem Biophys 286:546, 1991). Protein disulfide isomerase activity, measured by catalysis of the renaturation of ribonuclease inactivated by randomization of disulfide bonds, was detected in the supernatant solution after platelet activation. The activity was inhibited by peptides known to inhibit protein disulfide isomerase; the peptides also inhibited formation of disulfide-linked thrombospondin- thrombin complexes. The reaction catalyzed by the supernatant solution showed a pH dependence distinct from that of the uncatalyzed reaction. The activity was excluded by a 50-Kd dialysis membrane, and it was eluted in the void volume of a gel-filtration column, indicating that it was associated with a macromolecule. The activity was not removed by centrifugation at 100,000 g for 150 minutes indicating that it was not associated with membrane microvesicles. Possible functions for the release of protein disulfide isomerase by activated platelets are discussed.



2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Jose Irizarry ◽  
Nanivette Echevarria-Lorenzo ◽  
David Sanchez ◽  
Yaritza Inostroza ◽  
Alicia Rivera ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document