catalytic domains
Recently Published Documents


TOTAL DOCUMENTS

396
(FIVE YEARS 80)

H-INDEX

61
(FIVE YEARS 6)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Yaroslav Tsybovsky ◽  
Valentin Sereda ◽  
Marcin Golczak ◽  
Natalia I. Krupenko ◽  
Sergey A. Krupenko

AbstractPutative tumor suppressor ALDH1L1, the product of natural fusion of three unrelated genes, regulates folate metabolism by catalyzing NADP+-dependent conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. Cryo-EM structures of tetrameric rat ALDH1L1 revealed the architecture and functional domain interactions of this complex enzyme. Highly mobile N-terminal domains, which remove formyl from 10-formyltetrahydrofolate, undergo multiple transient inter-domain interactions. The C-terminal aldehyde dehydrogenase domains, which convert formyl to CO2, form unusually large interfaces with the intermediate domains, homologs of acyl/peptidyl carrier proteins (A/PCPs), which transfer the formyl group between the catalytic domains. The 4′-phosphopantetheine arm of the intermediate domain is fully extended and reaches deep into the catalytic pocket of the C-terminal domain. Remarkably, the tetrameric state of ALDH1L1 is indispensable for catalysis because the intermediate domain transfers formyl between the catalytic domains of different protomers. These findings emphasize the versatility of A/PCPs in complex, highly dynamic enzymatic systems.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cristina Gallego-Páramo ◽  
Noelia Hernández-Ortiz ◽  
Rubén M. Buey ◽  
Palma Rico-Lastres ◽  
Guadalupe García ◽  
...  

We have structurally and functionally characterized Skl and Pal endolysins, the latter being the first endolysin shown to kill effectively Streptococcus pneumoniae, a leading cause of deathly diseases. We have proved that Skl and Pal are cysteine-amidases whose catalytic domains, from CHAP and Amidase_5 families, respectively, share an α3β6-fold with papain-like topology. Catalytic triads are identified (for the first time in Amidase_5 family), and residues relevant for substrate binding and catalysis inferred from in silico models, including a calcium-binding site accounting for Skl dependence on this cation for activity. Both endolysins contain a choline-binding domain (CBD) with a β-solenoid fold (homology modeled) and six conserved choline-binding loci whose saturation induced dimerization. Remarkably, Pal and Skl dimers display a common overall architecture, preserved in choline-bound dimers of pneumococcal lysins with other catalytic domains and bond specificities, as disclosed using small angle X-ray scattering (SAXS). Additionally, Skl is proved to be an efficient anti-pneumococcal agent that kills multi-resistant strains and clinical emergent-serotype isolates. Interestingly, Skl and Pal time-courses of pneumococcal lysis were sigmoidal, which might denote a limited access of both endolysins to target bonds at first stages of lysis. Furthermore, their DTT-mediated activation, of relevance for other cysteine-peptidases, cannot be solely ascribed to reversal of catalytic-cysteine oxidation.


Author(s):  
Amenti Rajkrishna Mondal

The increasing antibiotic resistance conferred by Staphylococcus aureus to multiple potential antibiotics has become a serious issue of concern and threat to mankind worldwide. In light of this, phage lytic proteins have been reported which show potential antimicrobial activity against pathogenic microorganisms that could be a promising alternative to antibiotics to eradicate the antibiotic resistant problems. This review discusses the various applications of S. aureus phage lytic proteins and the potentiality of aureophage phi 11 endolysin and virion associated peptidoglycan hydrolase (VAPGH) against staphylococcus strains. Phage Phi11 endolysin harbors two enzymatically active domain; cysteine and histidine-dependent amidohydrolase/peptidase (CHAP) and Amidase 2 at the N-terminus and a cell wall binding domain (CBD) SH3 5 at the C-terminus, while virion associated peptidoglycan hydrolase (VAPGH) has two catalytic domains, CHAP and Glucosaminidase (Mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase) at its N-terminal and C-terminal, respectively.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5203
Author(s):  
Ravneet Kaur Grewal ◽  
Abdul Rajjak Shaikh ◽  
Suresh Gorle ◽  
Manjeet Kaur ◽  
Paula Alexendra Videira ◽  
...  

Mammalian cell surfaces are modified with complex arrays of glycans that play major roles in health and disease. Abnormal glycosylation is a hallmark of cancer; terminal sialic acid and fucose in particular have high levels in tumor cells, with positive implications for malignancy. Increased sialylation and fucosylation are due to the upregulation of a set of sialyltransferases (STs) and fucosyltransferases (FUTs), which are potential drug targets in cancer. In the past, several advances in glycostructural biology have been made with the determination of crystal structures of several important STs and FUTs in mammals. Additionally, how the independent evolution of STs and FUTs occurred with a limited set of global folds and the diverse modular ability of catalytic domains toward substrates has been elucidated. This review highlights advances in the understanding of the structural architecture, substrate binding interactions, and catalysis of STs and FUTs in mammals. While this general understanding is emerging, use of this information to design inhibitors of STs and FUTs will be helpful in providing further insights into their role in the manifestation of cancer and developing targeted therapeutics in cancer.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1196
Author(s):  
Michal Mayer ◽  
Yulia Matiuhin ◽  
Mickal Nawatha ◽  
Orly Tabachnikov ◽  
Inbar Fish ◽  
...  

BceF is a bacterial tyrosine kinase (BY-kinase) from Burkholderia cepacia, a Gram-negative bacterium accountable for respiratory infections in immunocompromised and cystic fibrosis patients. BceF is involved in the production of exopolysaccharides secreted to the biofilm matrix and promotes resistant and aggressive infections. BY-kinases share no homology with mammalian kinases, and thereby offer a means to develop novel and specific antivirulence drugs. Here, we report the crystal structure of the BceF kinase domain at 1.85 Å resolution. The isolated BceF kinase domain is assembled as a dimer in solution and crystallized as a dimer in the asymmetric unit with endogenous adenosine-diphosphate bound at the active sites. The low enzymatic efficiency measured in solution may be explained by the partial obstruction of the active sites at the crystallographic dimer interface. This study provides insights into self-assembly and the specific activity of isolated catalytic domains. Several unique variations around the active site compared to other BY-kinases may allow for structure-based design of specific inhibitors to target Burkholderia cepacia virulence.


2021 ◽  
Vol 2 ◽  
Author(s):  
Candice L. Swift ◽  
Nikola G. Malinov ◽  
Stephen J. Mondo ◽  
Asaf Salamov ◽  
Igor V. Grigoriev ◽  
...  

Anaerobic fungi are a potential biotechnology platform to produce biomass-degrading enzymes. Unlike model fungi such as yeasts, stress responses that are relevant during bioprocessing have not yet been established for anaerobic fungi. In this work, we characterize both the heat shock and unfolded protein responses of four strains of anaerobic fungi (Anaeromyces robustus, Caecomyces churrovis, Neocallimastix californiae, and Piromyces finnis). The inositol-requiring 1 (Ire1) stress sensor, which typically initiates the fungal UPR, was conserved in all four genomes. However, these genomes also encode putative transmembrane kinases with catalytic domains that are similar to the metazoan stress-sensing enzyme PKR-like endoplasmic reticulum kinase (PERK), although whether they function in the UPR of anaerobic fungi remains unclear. Furthermore, we characterized the global transcriptional responses of Anaeromyces robustus and Neocallimastix californiae to a transient heat shock. Both fungi exhibited the hallmarks of ER stress, including upregulation of genes with functions in protein folding, ER-associated degradation, and intracellular protein trafficking. Relative to other fungi, the genomes of Neocallimastigomycetes contained the greatest gene percentage of HSP20 and HSP70 chaperones, which may serve to stabilize their asparagine-rich genomes. Taken together, these results delineate the unique stress response of anaerobic fungi, which is an important step toward their development as a biotechnology platform to produce enzymes and valuable biomolecules.


2021 ◽  
Vol 81 (16) ◽  
pp. 3310-3322.e6
Author(s):  
Mohammad Roghanian ◽  
Katleen Van Nerom ◽  
Hiraku Takada ◽  
Julien Caballero-Montes ◽  
Hedvig Tamman ◽  
...  

Microbiology ◽  
2021 ◽  
Vol 167 (7) ◽  
Author(s):  
Sunetra Mondal ◽  
Abhijeet Thakur ◽  
Carlos M. G. A. Fontes ◽  
Arun Goyal

Cellulosomes are highly complex cell-bound multi-enzymatic nanomachines used by anaerobes to break down plant carbohydrates. The genome sequence of Ruminococcus flavefaciens revealed a remarkably diverse cellulosome composed of more than 200 cellulosomal enzymes. Here we provide a detailed biochemical characterization of a highly elaborate R. flavefaciens cellulosomal enzyme containing an N-terminal dockerin module, which anchors the enzyme into the multi-enzyme complex through binding of cohesins located in non-catalytic cell-bound scaffoldins, and three tandemly repeated family 16 glycoside hydrolase (GH16) catalytic domains. The DNA sequence encoding the three homologous catalytic domains was cloned and hyper-expressed in Escherichia coli BL21 (DE3) cells. SDS-PAGE analysis of purified His6 tag containing RfGH16_21 showed a single soluble protein of molecular size ~89 kDa, which was in agreement with the theoretical size, 89.3 kDa. The enzyme RfGH16_21 exhibited activity over a wide pH range (pH 5.0–8.0) and a broad temperature range (50–70 °C), displaying maximum activity at an optimum pH of 7.0 and optimum temperature of 55 °C. Substrate specificity analysis of RfGH16_21 revealed maximum activity against barley β-d-glucan (257 U mg−1) followed by lichenan (247 U mg−1), but did not show significant activity towards other tested polysaccharides, suggesting that it is specifically a β-1,3-1,4-endoglucanase. TLC analysis revealed that RfGH16_21 hydrolyses barley β-d-glucan to cellotriose, cellotetraose and a higher degree of polymerization of gluco-oligosaccharides indicating an endo-acting catalytic mechanism. This study revealed a fairly high, active and thermostable bacterial endo-glucanase which may find considerable biotechnological potentials.


Sign in / Sign up

Export Citation Format

Share Document