scholarly journals On the inference speed and video-compression robustness of DeepLabCut

2018 ◽  
Author(s):  
Alexander Mathis ◽  
Richard Warren

Pose estimation is crucial for many applications in neuroscience, biomechanics, genetics and beyond. We recently presented a highly efficient method for markerless pose estimation based on transfer learning with deep neural networks called DeepLabCut. Current experiments produce vast amounts of video data, which pose challenges for both storage and analysis. Here we improve the inference speed of DeepLabCut by up to tenfold and benchmark these updates on various CPUs and GPUs. In particular, depending on the frame size, poses can be inferred offline at up to 1200 frames per second (FPS). For instance, 278 × 278 images can be processed at 225 FPS on a GTX 1080 Ti graphics card. Furthermore, we show that DeepLabCut is highly robust to standard video compression (ffmpeg). Compression rates of greater than 1,000 only decrease accuracy by about half a pixel (for 640 × 480 frame size). DeepLabCut’s speed and robustness to compression can save both time and hardware expenses.

2021 ◽  
pp. 111275
Author(s):  
N. Krishnamoorthy ◽  
LVNarasimha Prasad ◽  
CSPavan Kumar ◽  
Bharat Subedi ◽  
Haftom Baraki Abraha ◽  
...  

2021 ◽  
Author(s):  
Akinori Minagi ◽  
Hokuto Hirano ◽  
Kazuhiro Takemoto

Abstract Transfer learning from natural images is well used in deep neural networks (DNNs) for medical image classification to achieve computer-aided clinical diagnosis. Although the adversarial vulnerability of DNNs hinders practical applications owing to the high stakes of diagnosis, adversarial attacks are expected to be limited because training data — which are often required for adversarial attacks — are generally unavailable in terms of security and privacy preservation. Nevertheless, we hypothesized that adversarial attacks are also possible using natural images because pre-trained models do not change significantly after fine-tuning. We focused on three representative DNN-based medical image classification tasks (i.e., skin cancer, referable diabetic retinopathy, and pneumonia classifications) and investigated whether medical DNN models with transfer learning are vulnerable to universal adversarial perturbations (UAPs), generated using natural images. UAPs from natural images are useful for both non-targeted and targeted attacks. The performance of UAPs from natural images was significantly higher than that of random controls, although slightly lower than that of UAPs from training images. Vulnerability to UAPs from natural images was observed between different natural image datasets and between different model architectures. The use of transfer learning causes a security hole, which decreases the reliability and safety of computer-based disease diagnosis. Model training from random initialization (without transfer learning) reduced the performance of UAPs from natural images; however, it did not completely avoid vulnerability to UAPs. The vulnerability of UAPs from natural images will become a remarkable security threat.


2020 ◽  
Vol 17 (11) ◽  
pp. 634-646
Author(s):  
Andrew Lee ◽  
Will Dallmann ◽  
Scott Nykl ◽  
Clark Taylor ◽  
Brett Borghetti

Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 456 ◽  
Author(s):  
Hao Cheng ◽  
Dongze Lian ◽  
Shenghua Gao ◽  
Yanlin Geng

Inspired by the pioneering work of the information bottleneck (IB) principle for Deep Neural Networks’ (DNNs) analysis, we thoroughly study the relationship among the model accuracy, I ( X ; T ) and I ( T ; Y ) , where I ( X ; T ) and I ( T ; Y ) are the mutual information of DNN’s output T with input X and label Y. Then, we design an information plane-based framework to evaluate the capability of DNNs (including CNNs) for image classification. Instead of each hidden layer’s output, our framework focuses on the model output T. We successfully apply our framework to many application scenarios arising in deep learning and image classification problems, such as image classification with unbalanced data distribution, model selection, and transfer learning. The experimental results verify the effectiveness of the information plane-based framework: Our framework may facilitate a quick model selection and determine the number of samples needed for each class in the unbalanced classification problem. Furthermore, the framework explains the efficiency of transfer learning in the deep learning area.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Alejandro Baldominos ◽  
Yago Saez ◽  
Pedro Isasi

Neuroevolution is the field of study that uses evolutionary computation in order to optimize certain aspect of the design of neural networks, most often its topology and hyperparameters. The field was introduced in the late-1980s, but only in the latest years the field has become mature enough to enable the optimization of deep learning models, such as convolutional neural networks. In this paper, we rely on previous work to apply neuroevolution in order to optimize the topology of deep neural networks that can be used to solve the problem of handwritten character recognition. Moreover, we take advantage of the fact that evolutionary algorithms optimize a population of candidate solutions, by combining a set of the best evolved models resulting in a committee of convolutional neural networks. This process is enhanced by using specific mechanisms to preserve the diversity of the population. Additionally, in this paper, we address one of the disadvantages of neuroevolution: the process is very expensive in terms of computational time. To lessen this issue, we explore the performance of topology transfer learning: whether the best topology obtained using neuroevolution for a certain domain can be successfully applied to a different domain. By doing so, the expensive process of neuroevolution can be reused to tackle different problems, turning it into a more appealing approach for optimizing the design of neural networks topologies. After evaluating our proposal, results show that both the use of neuroevolved committees and the application of topology transfer learning are successful: committees of convolutional neural networks are able to improve classification results when compared to single models, and topologies learned for one problem can be reused for a different problem and data with a good performance. Additionally, both approaches can be combined by building committees of transferred topologies, and this combination attains results that combine the best of both approaches.


Sign in / Sign up

Export Citation Format

Share Document