power outputs
Recently Published Documents


TOTAL DOCUMENTS

402
(FIVE YEARS 110)

H-INDEX

35
(FIVE YEARS 6)

Author(s):  
Mohid Muneeb Khattak ◽  
Christopher Sugino ◽  
Alper Erturk

We investigate piezoelectric energy harvesting on a locally resonant metamaterial beam for concurrent power generation and bandgap formation. The mechanical resonators (small beam attachments on the main beam structure) have piezoelectric elements which are connected to electrical loads to quantify their electrical output in the locally resonant bandgap neighborhood. Electromechanical model simulations are followed by detailed experiments on a beam setup with nine resonators. The main beam is excited by an electrodynamic shaker from its base over the frequency range of0–150 Hz and the motion at the tip is measured using a laser Doppler vibrometer to extract its transmissibility frequency response. The formation of a locally resonant bandgap is confirmed and a resistor sweep is performed for the energy harvesters to capture the optimal power conditions. Individual power outputs of the harvester resonators are compared in terms of their percentage contribution to the total power output. Numerical and experimental analysis shows that, inside the locally resonant bandgap, most of the vibrational energy (and hence harvested energy) is localized near the excited base of the beam, and the majority of the total harvested power is extracted by the first few resonators.


2021 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Peter Leo ◽  
Iñigo Mujika ◽  
Justin Lawley

PURPOSE: The COVID-19 pandemic and its associated mobility restrictions caused many athletes to adjust or reduce their usual training load. The aim of this study was to investigate how the COVID-19 restrictions affected training and performance physiology measures in U23 elite cyclists. METHODS: Twelve U23 elite cyclists (n = 12) participated in this study (mean ± SD: Age 21.2 ± 1.2 years; height 182.9 ± 4.7 cm; body mass 71.4 ± 6.5 kg). Training characteristics were assessed between 30 days pre, during, and post COVID-19 restrictions, respectively. The physiological assessment in the laboratory was 30 days pre and post COVID-19 restrictions and included maximum oxygen uptake (V̇O2max), peak power output for sprint (SprintPmax), and ramp incremental graded exercise (GXTPmax), as well as power output at ventilatory threshold (VT) and respiratory compensation point (RCP). RESULTS: Training load characteristics before, during, and after the lockdown remained statistically unchanged (p > 0.05) despite large effects (>0.8) with mean reductions of 4.7 to 25.0% during COVID-19 restrictions. There were no significant differences in maximal and submaximal power outputs, as well as relative and absolute V̇O2max between pre and post COVID-19 restrictions (p > 0.05) with small to moderate effects. DISCUSSION: These results indicate that COVID-19 restrictions did not negatively affect training characteristics and physiological performance measures in U23 elite cyclists for a period of <30 days. In contrast with recent reports on professional cyclists and other elite level athletes, these findings reveal that as long as athletes are able to maintain and/or slightly adapt their training routine, physiological performance variables remain stable.


2021 ◽  
Vol 157 (A4) ◽  
Author(s):  
R Grega ◽  
J Homišin ◽  
M Puškár ◽  
J Kul’ka ◽  
J Petróci ◽  
...  

Development of diesel engines is focused on reduction of exhaust gas emissions, increase of efficiency of the fuel mixture combustion and decrease of fuel consumption. Such engines are referred to as low-emission engines. Low- engines trends bring higher engine power outputs, torques and also increase of vibrations and noisiness level. In order to reduce these vibrations of diesel engines, it is necessary to apply different dynamical elements, which are able to increase an adverse impact of exciting amplitudes. One of the results is application of a pneumatic dual-mass flywheel. The pneumatic dual-mass flywheel is a dynamical element that consists of two masses (the primary and the secondary mass), which are jointed together by means of a flexible interconnection. This kind of the flywheel solution enables to change resonance areas of the mechanical system which consequently leads to reduction of vibrations.


2021 ◽  
Vol 13 (24) ◽  
pp. 13510
Author(s):  
Mariia Kozlova ◽  
Alena Lohrmann

The global increase in electricity supply volatility due to the growing share of intermittent renewable energy sources together with recent extreme weather events draws attention to energy system reliability issues and the role of renewable energy sources within these systems. Renewable energy deployment strategies have already become a key element in debates on future global energy systems. At the same time, more extensive use of renewable energy sources implies a higher dependence on intermittent power, which puts the reliability of the electricity system at risk. Policymakers are introducing measures to increase the reliability of energy systems. Paradoxically, support for renewable energy and analyses of energy system reliability have been dealt with by two different and rarely overlapping research approaches. As a result, renewable energy promotion has often been designed without accounting for system reliability. To our knowledge, a model that captures those investment incentives and allows for tuning such financial support does not exist. This paper introduces a hybrid model that can potentially steer renewable energy investments in favor of energy system reliability. We demonstrate the idea of reliability-based support for renewable energy sources in action using a stylized case. Depending on the complementarity of different renewable energy power outputs available in the system, such reliability-based support can substantially reduce the necessity for greater backup capacity, can cut the overall costs of the energy system, and can reduce its environmental footprint.


Author(s):  
Artur Ferreira Tramontin ◽  
Fernando Klitzke Borszcz ◽  
Vitor Costa

AbstractThis study investigated the influence of different warm-up protocols on functional threshold power. Twenty-one trained cyclists (˙VO2max=60.2±6.8 ml·kg−1·min−1) performed an incremental test and four 20-min time trials preceded by different warm-up protocols. Two warm-up protocols lasted 45 min, with a 5-min time trial performed either 15 min (Traditional) or 25 min (Reverse) before the 20-min time trial. The other two warm-up protocols lasted 25 min (High Revolutions-per minute) and 10 min (Self-selected), including three fast accelerations and self-selected intensity, respectively. The power outputs achieved during the 20-min time trial preceded by the Traditional and Reverse warm-up protocols were significantly lower than the High Revolutions-per-minute and Self-selected protocols (256±30; 257±30; 270±30; 270±30 W, respectively). Participants chose a conservative pacing strategy at the onset (negative) for the Traditional and Reverse but implemented a fast-start strategy (U-shaped) for the High revolutions-per-minute and Self-selected warm-up protocols. In conclusion, 20-min time-trial performance and pacing are affected by different warm-ups. Consequently, the resultant functional threshold power may be different depending on whether the original protocol with a 5-min time trial is followed or not.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012087
Author(s):  
N P Williams ◽  
L Roumen ◽  
G McCauley ◽  
S M O’Shaughnessy

Abstract The effect of thermal cycling on thermoelectric generator (TEG) performance is investigated for six nominally identical samples subjected to the same heating cycle profile. All TEGs experienced performance degradation, with maximum power outputs between 28 % and 49 % of pre-cycling values and a post-cycling decrease in the dimensionless figure of merit ZT of 21 % to 49 %. Sudden significant power reductions and subsequent internal resistance increases were observed for all samples, indicative of internal damage to the structure of the TEGs arising from material interface separation and micro-crack formation.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7042
Author(s):  
Petar Gljušćić ◽  
Saša Zelenika

The development of wearable devices and remote sensor networks progressively relies on their increased power autonomy, which can be further expanded by replacing conventional power sources, characterized by limited lifetimes, with energy harvesting systems. Due to its pervasiveness, kinetic energy is considered as one of the most promising energy forms, especially when combined with the simple and scalable piezoelectric approach. The integration of piezoelectric energy harvesters, generally in the form of bimorph cantilevers, with wearable and remote sensors, highlighted a drawback of such a configuration, i.e., their narrow operating bandwidth. In order to overcome this disadvantage while maximizing power outputs, optimized cantilever geometries, developed using the design of experiments approach, are analysed and combined in this work with frequency up-conversion excitation that allows converting random kinetic ambient motion into a periodical excitation of the harvester. The developed optimised designs, all with the same harvesters’ footprint area of 23 × 15 mm, are thoroughly analysed via coupled harmonic and transient numerical analyses, along with the mostly neglected strength analyses. The models are validated experimentally via innovative experimental setups. The thus-proposed f = 50 mm watch-like prototype allows, by using a rotating flywheel, the collection of low-frequency (ca. 1 to 3 Hz) human kinetic energy, and the periodic excitation of the optimized harvesters that, oscillating at their eigenfrequencies (~325 to ~930 Hz), display specific power outputs improved by up to 5.5 times, when compared to a conventional rectangular form, with maximal power outputs of up to >130 mW and average power outputs of up to >3 mW. These power levels should amply satisfy the requirements of factual wearable medical systems, while providing also an adaptability to accommodate several diverse sensors. All of this creates the preconditions for the development of novel autonomous wearable devices aimed not only at sensor networks for remote patient monitoring and telemedicine, but, potentially, also for IoT and structural health monitoring.


Author(s):  
Stacey P A Forbes ◽  
Lawrence L. Spriet

This study examined if acute dietary nitrate supplementation (140 ml beetroot juice, BRJ) would reduce oxygen consumption (V̇O2) during cycling at power outputs of 50 and 70% V̇O2max in 14 well-trained female Canadian University Ringette League athletes. BRJ had no effect on VO2 or heart rate but significantly reduced ratings of perceived exertion (RPE) at both intensities. Individually, 4 participants responded to BRJ supplementation with a ≥3% reduction in V̇O2 at the higher power output. • Acute BRJ supplementation did not improve exercise economy in well-trained females, but significantly reduced RPE. However, 4/14 subjects did respond with a ≥3% V̇O2 reduction.


2021 ◽  
Author(s):  
Sung-Ho Hong

This chapter deals with the tribology of marine diesel engines. Several types of diesel engines have been installed and used in the engine room of marine ships. Some of them, used for propulsion, operate at low-speed in a two-stroke combustion process in conjunction with propellers. Four-stroke engines are used for power generation and operates at medium-speed. In general, two or more four-stroke engines, including spares, are installed in the large ships. Tribological problems are important issue in the respect of reliability in the marine diesel engines, and there are many tribological engine components including bearings, pistons, fuel injection pumps and rollers. Moreover, the marine engines have lubricant problems such as lacquering. Improvements to the tribological performance of marine engine components, and lubricants can provide reduced oil and fuel consumption, improved durability, increased engines power outputs and maintenance. Therefore, this chapter shows better designs and methods in order to improve the tribological problem in the marine diesel engines.


Sign in / Sign up

Export Citation Format

Share Document