rice leaf
Recently Published Documents


TOTAL DOCUMENTS

565
(FIVE YEARS 131)

H-INDEX

40
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Guosheng Zhang ◽  
Tongyu Xu ◽  
Youwen Tian ◽  
Shuai Feng ◽  
Dongxue Zhao ◽  
...  

Abstract Background: Hyperspectral imaging is an emerging technology applied in plant disease research, including disease detection, multiple disease identification, disease severity assessment, and disease resistance evaluation. Rice leaf blast is prevalent all over the world and is a serious threat to rice yield and quality. In this paper, the standard deviation (STD) of the spectral reflectance of whole leaves was calculated and a support vector machine (SVM) model was built to classify the degree of rice leaf blast at different growth stages.Results: The classification accuracy of the full-spectrum-based SVM model at jointing stage, booting stage and heading stage was 94.44%, 81.58% and 80.48%, respectively. The corresponding macro recall values were 0.9714, 0.715 and 0.79. The average STD of the spectral reflectance of the whole leaf differed not only within samples with different disease grades, but also those with the same disease level. Conclusion: The STD of the spectral reflectance of whole leaf could be utilized to classify the rice leaf blast degree at different growth stages. The classification method was derived from physiological phenomena that were visible to the naked eye, making it more intuitive and convincing.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1083
Author(s):  
Weixiang Lv ◽  
Xingfu Jiang ◽  
Xiujie Chen ◽  
Yunxia Cheng ◽  
Jixing Xia ◽  
...  

Understanding how species that follow different life-history strategies respond to stressful temperature can be essential for efficient treatments of agricultural pests. Here, we focused on how the development, reproduction, flight, and reproductive consequences of migration of Cnaphalocrocis medinalis were influenced by exposure to different rearing temperatures in the immature stage. We found that the immature rice leaf roller that were reared at low temperatures (18 and 22 °C) developed more slowly than the normal temperature 26 °C, while those reared at high temperatures (34 °C) grew faster. Female adults from low immature stage rearing temperatures showed stronger reproductive ability than those at 26 and 34 °C, such as the preoviposition period (POP) significantly decreased, while the total lifetime fecundity obviously increased. However, 34 °C did not significantly reduce the reproductive performances of females compared to 26 °C. On the contrary, one relative decreased tendency of flight capacity was found in the lower immature temperature treatments. Furthermore, flight is a costly strategy for reproduction output to compete for limited internal resources. In the lower temperature treatments, after d1-tethered flight treatment, negative reproductive consequences were found that flight significantly decreased the lifetime fecundity and mating frequency of females from low rearing temperatures in the immature stage compared to the controls (no tethered-flight). However, in the 26 and 34 °C treatments, the same flight treatment induced a positive influence on reproduction, which significantly reduced the POP and period of first oviposition (PFO). The results suggest that the experience of relative high temperatures in the immature stage is more likely to trigger the onset of migration, but lower temperatures in the immature stage may induce adults to have a greater resident propensity with stronger reproductive ability.


Author(s):  
Harikumar Pallathadka ◽  
Pavankumar Ravipati ◽  
Guna Sekhar Sajja ◽  
Khongdet Phasinam ◽  
Thanwamas Kassanuk ◽  
...  

2021 ◽  
Author(s):  
Naomi Cox ◽  
Heather J Walker ◽  
James Pitman ◽  
W Paul Quick ◽  
Lisa M Smith ◽  
...  

Leaf development is crucial to establish the photosynthetic competency of plants. It is a process that requires coordinated changes in cell number, cell differentiation, transcriptomes, metabolomes and physiology. However, despite the importance of leaf formation for our major crops, early developmental processes for rice have not been comprehensively described. Here we detail the temporal developmental trajectory of early rice leaf development and connect morphological changes to metabolism. In particular, a developmental index based on the patterning of epidermal differentiation visualised by electron microscopy enabled high resolution staging of early growth for single primordium metabolite profiling. These data demonstrate that a switch in the constellation of tricarboxylic acid (TCA) cycle metabolites defines a narrow window towards the end of the P3 stage of leaf development. Taken in the context of other data in the literature, our results substantiate that this phase of rice leaf growth, equivalent to a change of primordium length from around 5 to 7.5 mm, defines a major shift in rice leaf determination towards a photosynthetically defined structure. We speculate that efforts to engineer rice leaf structure should focus on the developmental window prior to these determining events.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1571
Author(s):  
Ye Tao ◽  
Jishuang Zhang ◽  
Lian Song ◽  
Chuang Cai ◽  
Dongming Wang ◽  
...  

Nitrogen (N) has a unique place in agricultural systems with large requirements. To achieve optimal nitrogen management that meets the needs of agricultural systems without causing potential environmental risks, it is of great significance to increase N use efficiency (NUE) in agricultural systems. A chlorophyll meter, for example, the SPAD-502, can provide a simple, nondestructive, and quick method for monitoring leaf N status and NUE. However, the SPAD-based crop leaf’s N status varies greatly due to environmental factors such as CO2 concentration ([CO2]) or temperature variations. In this study, we conducted [CO2] (ambient and enriched up to 500 μmol moL1) and temperature (ambient and increased by 1.5~2.0 °C) controlled experiments from 2015 to 2017 and in 2020 in two Free-Air CO2 Enrichment (FACE) sites. Leaf characters (SPAD readings, chlorophyll a + b, N content, etc.) of seven rice cultivars were measured in this four year experiment. Here, we provide evidence that SPAD readings are significantly linearly correlated with rice leaf chlorophyll a + b content (chl a + b) and N content, while the relationships are profoundly affected by elevated [CO2] and warming. Under elevated [CO2] treatment (E), the relationship between chl a + b content and N content remains unchanged, but SPAD readings and chl a + b content show a significant difference to those under ambient (A) treatment, which distorts the SPAD-based N monitoring. Under warming (T), and combined elevated [CO2] and warming (ET) treatments, both of the relationships between SPAD and leaf a + b content and between leaf a + b content and N content show a significant difference to those under A treatment. To deal with this issue under the background of global climate change dominated by warming and elevated [CO2] in the future, we need to increase the SPAD reading’s threshold value by at least 5% to adjust for applying N fertilizer within the rice cropping system by mid-century.


2021 ◽  
Vol 13 (22) ◽  
pp. 4587
Author(s):  
Gui-Chou Liang ◽  
Yen-Chieh Ouyang ◽  
Shu-Mei Dai

The detection of rice leaf folder (RLF) infestation usually depends on manual monitoring, and early infestations cannot be detected visually. To improve detection accuracy and reduce human error, we use push-broom hyperspectral sensors to scan rice images and use machine learning and deep neural learning methods to detect RLF-infested rice leaves. Different from traditional image processing methods, hyperspectral imaging data analysis is based on pixel-based classification and target recognition. Since the spectral information itself is a feature and can be considered a vector, deep learning neural networks do not need to use convolutional neural networks to extract features. To correctly detect the spectral image of rice leaves infested by RLF, we use the constrained energy minimization (CEM) method to suppress the background noise of the spectral image. A band selection method was utilized to reduce the computational energy consumption of using the full-band process, and six bands were selected as candidate bands. The following method is the band expansion process (BEP) method, which is utilized to expand the vector length to improve the problem of compressed spectral information for band selection. We use CEM and deep neural networks to detect defects in the spectral images of infected rice leaves and compare the performance of each in the full frequency band, frequency band selection, and frequency BEP. A total of 339 hyperspectral images were collected in this study; the results showed that six bands were sufficient for detecting early infestations of RLF, with a detection accuracy of 98% and a Dice similarity coefficient of 0.8, which provides advantages of commercialization of this field.


Author(s):  
Kotharu Uma Venkata Ravi Teja ◽  
Bhumula Pavan Venkat Reddy ◽  
Likhitha Reddy Kesara ◽  
Kotaru Drona Phani Kowshik ◽  
Lakshmi Anchitha Panchaparvala

2021 ◽  
Author(s):  
Amandeep Kaur ◽  
Kalpna Guleria ◽  
Naresh Kumar Trivedi

Sign in / Sign up

Export Citation Format

Share Document