scholarly journals Partitioned coalescence support reveals biases in species-tree methods and detects gene trees that determine phylogenomic conflicts

2018 ◽  
Author(s):  
John Gatesy ◽  
Daniel B. Sloan ◽  
Jessica M. Warren ◽  
Richard H. Baker ◽  
Mark P. Simmons ◽  
...  

AbstractGenomic datasets sometimes support unconventional or conflicting phylogenetic relationships when different tree-building methods are applied. Coherent interpretations of such results are enabled by partitioning support for controversial relationships among the constituent genes of a phylogenomic dataset. For the supermatrix (= concatenation) approach, several simple methods that measure the distribution of support and conflict among loci were introduced over 15 years ago. More recently, partitioned coalescence support (PCS) was developed for phylogenetic coalescence methods that account for incomplete lineage sorting and use the summed fits of gene trees to estimate the species tree. Here, we automate computation of PCS to permit application of this index to genome-scale matrices that include hundreds of loci. Reanalyses of four phylogenomic datasets for amniotes, land plants, skinks, and angiosperms demonstrate how PCS scores can be used to: 1) compare conflicting results favored by alternative coalescence methods, 2) identify outlier gene trees that have a disproportionate influence on the resolution of contentious relationships, 3) assess the effects of missing data in species-trees analysis, and 4) clarify biases in commonly-implemented coalescence methods and support indices. We show that key phylogenomic conclusions from these analyses often hinge on just a few gene trees and that results can be driven by specific biases of a particular coalescence method and/or the extreme weight placed on gene trees with high taxon sampling. Attributing exceptionally high weight to some gene trees and very low weight to other gene trees counters the basic logic of phylogenomic coalescence analysis; even clades in species trees with high support according to commonly used indices (likelihood-ratio test, bootstrap, Bayesian local posterior probability) can be unstable to the removal of only one or two gene trees with high PCS. Computer simulations cannot adequately describe all of the contingencies and complexities of empirical genetic data. PCS scores complement simulation work by providing specific insights into a particular dataset given the assumptions of the phylogenetic coalescence method that is applied. In combination with standard measures of nodal support, PCS provides a more complete understanding of the overall genomic evidence for contested evolutionary relationships in species trees.

2022 ◽  
Author(s):  
XiaoXu Pang ◽  
Da-Yong Zhang

The species studied in any evolutionary investigation generally constitute a very small proportion of all the species currently existing or that have gone extinct. It is therefore likely that introgression, which is widespread across the tree of life, involves "ghosts," i.e., unsampled, unknown, or extinct lineages. However, the impact of ghost introgression on estimations of species trees has been rarely studied and is thus poorly understood. In this study, we use mathematical analysis and simulations to examine the robustness of species tree methods based on a multispecies coalescent model under gene flow sourcing from an extant or ghost lineage. We found that very low levels of extant or ghost introgression can result in anomalous gene trees (AGTs) on three-taxon rooted trees if accompanied by strong incomplete lineage sorting (ILS). In contrast, even massive introgression, with more than half of the recipient genome descending from the donor lineage, may not necessarily lead to AGTs. In cases involving an ingroup lineage (defined as one that diverged no earlier than the most basal species under investigation) acting as the donor of introgression, the time of root divergence among the investigated species was either underestimated or remained unaffected, but for the cases of outgroup ghost lineages acting as donors, the divergence time was generally overestimated. Under many conditions of ingroup introgression, the stronger the ILS was, the higher was the accuracy of estimating the time of root divergence, although the topology of the species tree is more prone to be biased by the effect of introgression.


2017 ◽  
Author(s):  
Joseph F. Walker ◽  
Joseph W. Brown ◽  
Stephen A. Smith

ABSTRACTRecent studies have demonstrated that conflict is common among gene trees in phylogenomic studies, and that less than one percent of genes may ultimately drive species tree inference in supermatrix analyses. Here, we examined two datasets where supermatrix and coalescent-based species trees conflict. We identified two highly influential “outlier” genes in each dataset. When removed from each dataset, the inferred supermatrix trees matched the topologies obtained from coalescent analyses. We also demonstrate that, while the outlier genes in the vertebrate dataset have been shown in a previous study to be the result of errors in orthology detection, the outlier genes from a plant dataset did not exhibit any obvious systematic error and therefore may be the result of some biological process yet to be determined. While topological comparisons among a small set of alternate topologies can be helpful in discovering outlier genes, they can be limited in several ways, such as assuming all genes share the same topology. Coalescent species tree methods relax this assumption but do not explicitly facilitate the examination of specific edges. Coalescent methods often also assume that conflict is the result of incomplete lineage sorting (ILS). Here we explored a framework that allows for quickly examining alternative edges and support for large phylogenomic datasets that does not assume a single topology for all genes. For both datasets, these analyses provided detailed results confirming the support for coalescent-based topologies. This framework suggests that we can improve our understanding of the underlying signal in phylogenomic datasets by asking more targeted edge-based questions.


2022 ◽  
Vol 12 ◽  
Author(s):  
Martha Kandziora ◽  
Petr Sklenář ◽  
Filip Kolář ◽  
Roswitha Schmickl

A major challenge in phylogenetics and -genomics is to resolve young rapidly radiating groups. The fast succession of species increases the probability of incomplete lineage sorting (ILS), and different topologies of the gene trees are expected, leading to gene tree discordance, i.e., not all gene trees represent the species tree. Phylogenetic discordance is common in phylogenomic datasets, and apart from ILS, additional sources include hybridization, whole-genome duplication, and methodological artifacts. Despite a high degree of gene tree discordance, species trees are often well supported and the sources of discordance are not further addressed in phylogenomic studies, which can eventually lead to incorrect phylogenetic hypotheses, especially in rapidly radiating groups. We chose the high-Andean Asteraceae genus Loricaria to shed light on the potential sources of phylogenetic discordance and generated a phylogenetic hypothesis. By accounting for paralogy during gene tree inference, we generated a species tree based on hundreds of nuclear loci, using Hyb-Seq, and a plastome phylogeny obtained from off-target reads during target enrichment. We observed a high degree of gene tree discordance, which we found implausible at first sight, because the genus did not show evidence of hybridization in previous studies. We used various phylogenomic analyses (trees and networks) as well as the D-statistics to test for ILS and hybridization, which we developed into a workflow on how to tackle phylogenetic discordance in recent radiations. We found strong evidence for ILS and hybridization within the genus Loricaria. Low genetic differentiation was evident between species located in different Andean cordilleras, which could be indicative of substantial introgression between populations, promoted during Pleistocene glaciations, when alpine habitats shifted creating opportunities for secondary contact and hybridization.


2020 ◽  
Author(s):  
Michael J. Sanderson ◽  
Michelle M. McMahon ◽  
Mike Steel

AbstractTerraces in phylogenetic tree space are sets of trees with identical optimality scores for a given data set, arising from missing data. These were first described for multilocus phylogenetic data sets in the context of maximum parsimony inference and maximum likelihood inference under certain model assumptions. Here we show how the mathematical properties that lead to terraces extend to gene tree - species tree problems in which the gene trees are incomplete. Inference of species trees from either sets of gene family trees subject to duplication and loss, or allele trees subject to incomplete lineage sorting, can exhibit terraces in their solution space. First, we show conditions that lead to a new kind of terrace, which stems from subtree operations that appear in reconciliation problems for incomplete trees. Then we characterize when terraces of both types can occur when the optimality criterion for tree search is based on duplication, loss or deep coalescence scores. Finally, we examine the impact of assumptions about the causes of losses: whether they are due to imperfect sampling or true evolutionary deletion.


2020 ◽  
Author(s):  
Ishrat Tanzila Farah ◽  
Md Muktadirul Islam ◽  
Kazi Tasnim Zinat ◽  
Atif Hasan Rahman ◽  
Md Shamsuzzoha Bayzid

AbstractSpecies tree estimation from multi-locus dataset is extremely challenging, especially in the presence of gene tree heterogeneity across the genome due to incomplete lineage sorting (ILS). Summary methods have been developed which estimate gene trees and then combine the gene trees to estimate a species tree by optimizing various optimization scores. In this study, we have formalized the concept of “phylogenomic terraces” in the species tree space, where multiple species trees with distinct topologies may have exactly the same optimization score (quartet score, extra lineage score, etc.) with respect to a collection of gene trees. We investigated the presence and implication of terraces in species tree estimation from multi-locus data by taking ILS into account. We analyzed two of the most popular ILS-aware optimization criteria: maximize quartet consistency (MQC) and minimize deep coalescence (MDC). Methods based on MQC are provably statistically consistent, whereas MDC is not a consistent criterion for species tree estimation. Our experiments, on a collection of dataset simulated under ILS, indicate that MDC-based methods may achieve competitive or identical quartet consistency score as MQC but could be significantly worse than MQC in terms of tree accuracy – demonstrating the presence and affect of phylogenomic terraces. This is the first known study that formalizes the concept of phylogenomic terraces in the context of species tree estimation from multi-locus data, and reports the presence and implications of terraces in species tree estimation under ILS.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Guilherme Rezende Dias ◽  
Eduardo Guimarães Dupim ◽  
Thyago Vanderlinde ◽  
Beatriz Mello ◽  
Antonio Bernardo Carvalho

Abstract Background The Drosophilidae family is traditionally divided into two subfamilies: Drosophilinae and Steganinae. This division is based on morphological characters, and the two subfamilies have been treated as monophyletic in most of the literature, but some molecular phylogenies have suggested Steganinae to be paraphyletic. To test the paraphyletic-Steganinae hypothesis, here, we used genomic sequences of eight Drosophilidae (three Steganinae and five Drosophilinae) and two Ephydridae (outgroup) species and inferred the phylogeny for the group based on a dataset of 1,028 orthologous genes present in all species (> 1,000,000 bp). This dataset includes three genera that broke the monophyly of the subfamilies in previous works. To investigate possible biases introduced by small sample sizes and automatic gene annotation, we used the same methods to infer species trees from a set of 10 manually annotated genes that are commonly used in phylogenetics. Results Most of the 1,028 gene trees depicted Steganinae as paraphyletic with distinct topologies, but the most common topology depicted it as monophyletic (43.7% of the gene trees). Despite the high levels of gene tree heterogeneity observed, species tree inference in ASTRAL, in PhyloNet, and with the concatenation approach strongly supported the monophyly of both subfamilies for the 1,028-gene dataset. However, when using the concatenation approach to infer a species tree from the smaller set of 10 genes, we recovered Steganinae as a paraphyletic group. The pattern of gene tree heterogeneity was asymmetrical and thus could not be explained solely by incomplete lineage sorting (ILS). Conclusions Steganinae was clearly a monophyletic group in the dataset that we analyzed. In addition to ILS, gene tree discordance was possibly the result of introgression, suggesting complex branching processes during the early evolution of Drosophilidae with short speciation intervals and gene flow. Our study highlights the importance of genomic data in elucidating contentious phylogenetic relationships and suggests that phylogenetic inference for drosophilids based on small molecular datasets should be performed cautiously. Finally, we suggest an approach for the correction and cleaning of BUSCO-derived genomic datasets that will be useful to other researchers planning to use this tool for phylogenomic studies.


2020 ◽  
Author(s):  
Mahim Mahbub ◽  
Zahin Wahab ◽  
Rezwana Reaz ◽  
M. Saifur Rahman ◽  
Md. Shamsuzzoha Bayzid

AbstractMotivationSpecies tree estimation from genes sampled from throughout the whole genome is complicated due to the gene tree-species tree discordance. Incomplete lineage sorting (ILS) is one of the most frequent causes for this discordance, where alleles can coexist in populations for periods that may span several speciation events. Quartet-based summary methods for estimating species trees from a collection of gene trees are becoming popular due to their high accuracy and statistical guarantee under ILS. Generating quartets with appropriate weights, where weights correspond to the relative importance of quartets, and subsequently amalgamating the weighted quartets to infer a single coherent species tree allows for a statistically consistent way of estimating species trees. However, handling weighted quartets is challenging.ResultsWe propose wQFM, a highly accurate method for species tree estimation from multi-locus data, by extending the quartet FM (QFM) algorithm to a weighted setting. wQFM was assessed on a collection of simulated and real biological datasets, including the avian phylogenomic dataset which is one of the largest phylogenomic datasets to date. We compared wQFM with wQMC, which is the best alternate method for weighted quartet amalgamation, and with ASTRAL, which is one of the most accurate and widely used coalescent-based species tree estimation methods. Our results suggest that wQFM matches or improves upon the accuracy of wQMC and ASTRAL.AvailabilitywQFM is available in open source form at https://github.com/Mahim1997/wQFM-2020.


2015 ◽  
Author(s):  
Leonardo de Oliveira Martins ◽  
David Posada

The history of particular genes and that of the species that carry them can be different due to different reasons. In particular, gene trees and species trees can truly differ due to well-known evolutionary processes like gene duplication and loss, lateral gene transfer or incomplete lineage sorting. Different species tree reconstruction methods have been developed to take this incongruence into account, which can be divided grossly into supertree and supermatrix approaches. Here, we introduce a new Bayesian hierarchical model that we have recently developed and implemented in the program Guenomu, that considers multiple sources of gene tree/species tree disagreement. Guenomu takes as input the posterior distributions of unrooted gene tree topologies for multiple gene families, in order to estimate the posterior distribution of rooted species tree topologies.


2015 ◽  
Author(s):  
Pranjal Vachaspati ◽  
Tandy Warnow

Background: Incomplete lineage sorting (ILS), modelled by the multi-species coalescent (MSC), is known to create discordance between gene trees and species trees, and lead to inaccurate species tree estimations unless appropriate methods are used to estimate the species tree. While many statistically consistent methods have been developed to estimate the species tree in the presence of ILS, only ASTRAL-2 and NJst have been shown to have good accuracy on large datasets. Yet, NJst is generally slower and less accurate than ASTRAL-2, and cannot run on some datasets. Results: We have redesigned NJst to enable it to run on all datasets, and we have expanded its design space so that it can be used with different distance-based tree estimation methods. The resultant method, ASTRID, is statistically consistent under the MSC model, and has accuracy that is competitive with ASTRAL-2. Furthermore, ASTRID is much faster than ASTRAL-2, completing in minutes on some datasets for which ASTRAL-2 used hours. Conclusions: ASTRID is a new coalescent-based method for species tree estimation that is competitive with the best current method in terms of accuracy, while being much faster. ASTRID is available in open source form on github.


Author(s):  
Yuancheng Wang ◽  
James H Degnan

Phylogenomic datasets often contain sequence alignments on different subsets of taxa for different genes. A major goal of phylogenetics is often to combine estimated gene trees from many loci into an overall estimate of a species tree. When data are missing for some combinations of genes and taxa, supertree methods can be used to combine gene trees on different subsets of taxa into an overall tree. However, studies of the performance of supertree methods when gene tree conflict is due to incomplete lineage sorting are needed to understand their statistical properties in this setting.We find that Matrix Representation with Parsimony (MRP), the most commonly used supertree method, can in many cases infer the species tree in spite of high levels of conflict in the input gene trees. However, for some species trees with short branches, MRP can be increasingly likely to return a tree other than the species tree as the number of loci increases. In some cases, deleting taxa at random or using estimated (rather than known) gene trees can either improve or hinder MRP for recovering the species tree.Although MRP is able to handle large amounts of conflict in the input gene trees, MRP is not statistically consistent for estimating species trees when gene trees arise under the multispecies coalescent model. However, triplet MRP is statistically consistent in this setting.


Sign in / Sign up

Export Citation Format

Share Document