secondary contact
Recently Published Documents


TOTAL DOCUMENTS

490
(FIVE YEARS 189)

H-INDEX

47
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Claire M&eacuterot ◽  
Kristina S R Stenl&oslashkk ◽  
Clare Venney ◽  
Martin Laporte ◽  
Michel Moser ◽  
...  

The parallel evolution of nascent pairs of ecologically differentiated species offers an opportunity to get a better glimpse at the genetic architecture of speciation. Of particular interest is our recent ability to consider a wider range of genomic variants, not only single-nucleotide polymorphisms (SNPs), thanks to long-read sequencing technology. We can now identify structural variants (SVs) like insertions, deletions, and other structural rearrangements, allowing further insights into the genetic architecture of speciation and how different variants are involved in species differentiation. Here, we investigated genomic patterns of differentiation between sympatric species pairs (Dwarf and Normal) belonging to the Lake Whitefish (Coregonus clupeaformis) species complex. We assembled the first reference genomes for both Dwarf and Normal Lake Whitefish, annotated the transposable elements, and analysed the genome in the light of related coregonid species. Next, we used a combination of long-read and short-read sequencing to characterize SVs and genotype them at population-scale using genome-graph approaches, showing that SVs cover five times more of the genome than SNPs. We then integrated both SNPs and SVs to investigate the genetic architecture of species differentiation in two different lakes and highlighted an excess of shared outliers of differentiation. In particular, a large fraction of SVs differentiating the two species was driven by transposable elements (TEs), suggesting that TE accumulation during a period of allopatry predating secondary contact may have been a key process in the speciation of the Dwarf and Normal Whitefish. Altogether, our results suggest that SVs play an important role in speciation and that by combining second and third generation sequencing we now have the ability to integrate SVs into speciation genomics.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 584
Author(s):  
James Tooby ◽  
Dan Weaving ◽  
Marwan Al-Dawoud ◽  
Gregory Tierney

Instrumented mouthguards (iMG) were used to collect head acceleration events (HAE) in men’s professional rugby league matches. Peak linear acceleration (PLA), peak angular acceleration (PAA) and peak change in angular velocity (ΔPAV) were collected using custom-fit iMG set with a 5 g single iMG-axis recording threshold. iMG were fitted to ten male Super League players for thirty-one player matches. Video analysis was conducted on HAE to identify the contact event; impacted player; tackle stage and head loading type. A total of 1622 video-verified HAE were recorded. Approximately three-quarters of HAE (75.7%) occurred below 10 g. Most (98.2%) HAE occurred during tackles (59.3% to tackler; 40.7% to ball carrier) and the initial collision stage of the tackle (43.9%). The initial collision stage resulted in significantly greater PAA and ΔPAV than secondary contact and play the ball tackle stages (p < 0.001). Indirect HAE accounted for 29.8% of HAE and resulted in significantly greater ΔPAV (p < 0.001) than direct HAE, but significantly lower PLA (p < 0.001). Almost all HAE were sustained in the tackle, with the majority occurring during the initial collision stage, making it an area of focus for the development of player protection strategies for both ball carriers and tacklers. League-wide and community-level implementation of iMG could enable a greater understanding of head acceleration exposure between playing positions, cohorts, and levels of play.


2022 ◽  
Vol 8 ◽  
Author(s):  
Mu-Han Chen ◽  
Ya-Yi Huang ◽  
Bi-Ying Huang ◽  
Hernyi Justin Hsieh ◽  
Jen Nie Lee ◽  
...  

The east Taiwan Strait is largely fringed by sandy and muddy habitats. However, a massive algal reef made of crustose coralline algae has been found along the coast off Taoyuan city in northwestern Taiwan. The porous structure of Taoyuan Algal Reef harbors high abundance and diversity in marine organisms, including the ferocious reef crab, Eriphia ferox. Such a pivotal geographic location and unique ecological features make Taoyuan Algal Reef a potential stepping stone connecting biotic reefs in the east Taiwan Strait, South China Sea to the south, and even the high latitude of Japan to the north. In this study, we examined the population connectivity and historical demography of E. ferox by analyzing mitochondrial cytochrome oxidase I (COI) fragments of 317 individuals sampled from 21 localities in the northwestern Pacific. Our analyses of haplotype network and pairwise FST comparisons revealed a lack of phylogeographical structure among E. ferox populations, implying the existence of a migration corridor connecting the South and East China Seas through the east Taiwan Strait. Multiple lines of evidence, including significant values in neutrality tests, unimodally shaped mismatch distributions, and Bayesian skyline plots elucidated the rapid population growth of E. ferox following the sea-level rise after Last Glacial Maximum (ca. 2–10 Ka). Such demographic expansion in E. ferox coincided with the time when Taoyuan Algal Reef started to build up around 7,500 years ago. Coalescent migration analyses further indicated that the large and continuous E. ferox population exclusively found in Datan Algal Reef, the heart of Taoyuan Algal Reef, was a source population exporting migrants both northward and southward to the adjacent populations. The bidirectional gene flow should be attributed to larval dispersal by ocean currents and secondary contact due to historical population expansion. Instead of serving as a stepping stone, our results support that Taoyuan Algal Reef is an essential population source for biotic reef-associated species along the east Taiwan Strait, and highlight the importance of conserving such a unique ecosystem currently threatened by anthropogenic development.


2022 ◽  
Vol 119 (3) ◽  
pp. e2109255118
Author(s):  
Vincent Ficarrotta ◽  
Joseph J. Hanly ◽  
Ling S. Loh ◽  
Caroline M. Francescutti ◽  
Anna Ren ◽  
...  

Mating cues evolve rapidly and can contribute to species formation and maintenance. However, little is known about how sexual signals diverge and how this variation integrates with other barrier loci to shape the genomic landscape of reproductive isolation. Here, we elucidate the genetic basis of ultraviolet (UV) iridescence, a courtship signal that differentiates the males of Colias eurytheme butterflies from a sister species, allowing females to avoid costly heterospecific matings. Anthropogenic range expansion of the two incipient species established a large zone of secondary contact across the eastern United States with strong signatures of genomic admixtures spanning all autosomes. In contrast, Z chromosomes are highly differentiated between the two species, supporting a disproportionate role of sex chromosomes in speciation known as the large-X (or large-Z) effect. Within this chromosome-wide reproductive barrier, linkage mapping indicates that cis-regulatory variation of bric a brac (bab) underlies the male UV-iridescence polymorphism between the two species. Bab is expressed in all non-UV scales, and butterflies of either species or sex acquire widespread ectopic iridescence following its CRISPR knockout, demonstrating that Bab functions as a suppressor of UV-scale differentiation that potentiates mating cue divergence. These results highlight how a genetic switch can regulate a premating signal and integrate with other reproductive barriers during intermediate phases of speciation.


2022 ◽  
Vol 12 ◽  
Author(s):  
Martha Kandziora ◽  
Petr Sklenář ◽  
Filip Kolář ◽  
Roswitha Schmickl

A major challenge in phylogenetics and -genomics is to resolve young rapidly radiating groups. The fast succession of species increases the probability of incomplete lineage sorting (ILS), and different topologies of the gene trees are expected, leading to gene tree discordance, i.e., not all gene trees represent the species tree. Phylogenetic discordance is common in phylogenomic datasets, and apart from ILS, additional sources include hybridization, whole-genome duplication, and methodological artifacts. Despite a high degree of gene tree discordance, species trees are often well supported and the sources of discordance are not further addressed in phylogenomic studies, which can eventually lead to incorrect phylogenetic hypotheses, especially in rapidly radiating groups. We chose the high-Andean Asteraceae genus Loricaria to shed light on the potential sources of phylogenetic discordance and generated a phylogenetic hypothesis. By accounting for paralogy during gene tree inference, we generated a species tree based on hundreds of nuclear loci, using Hyb-Seq, and a plastome phylogeny obtained from off-target reads during target enrichment. We observed a high degree of gene tree discordance, which we found implausible at first sight, because the genus did not show evidence of hybridization in previous studies. We used various phylogenomic analyses (trees and networks) as well as the D-statistics to test for ILS and hybridization, which we developed into a workflow on how to tackle phylogenetic discordance in recent radiations. We found strong evidence for ILS and hybridization within the genus Loricaria. Low genetic differentiation was evident between species located in different Andean cordilleras, which could be indicative of substantial introgression between populations, promoted during Pleistocene glaciations, when alpine habitats shifted creating opportunities for secondary contact and hybridization.


2022 ◽  
Author(s):  
Martin Stervander ◽  
Martim Melo ◽  
Peter Jones ◽  
Bengt Hansson

Sister species occurring sympatrically on islands are rare and offer unique opportunities to understand how speciation can proceed in the face of gene flow. The São Tomé grosbeak is a massive-billed, 'giant' finch endemic to the island of São Tomé in the Gulf of Guinea, where it has diverged from its co-occurring sister species the Príncipe seedeater, an average-sized finch that also inhabits two neighbouring islands. Here, we show that the grosbeak carries a large number of unique alleles different from all three Príncipe seedeater populations, but also shares many alleles with the sympatric São Tomé population of the seedeater, a genomic signature signifying divergence in isolation as well as subsequent introgressive hybridization. Furthermore, genomic segments that remain unique to the grosbeak are situated close to genes, including genes that determine bill morphology, suggesting the preservation of adaptive variation through natural selection during divergence with gene flow. This study reveals a complex speciation process whereby genetic drift, introgression, and selection during periods of isolation and secondary contact all have shaped the diverging genomes of these sympatric island endemic finches.


2022 ◽  
Vol 245 ◽  
pp. 106126
Author(s):  
Alexandre Falcão Aderne ◽  
Jamille de Araújo Bitencourt ◽  
Luciana Almeida Watanabe ◽  
Horacio Schneider ◽  
Paulo Roberto A. de Mello Affonso ◽  
...  

Heredity ◽  
2021 ◽  
Author(s):  
Christina Steinecke ◽  
Courtney E. Gorman ◽  
Marc Stift ◽  
Marcel E. Dorken

AbstractThe transition to self-compatibility from self-incompatibility is often associated with high rates of self-fertilization, which can restrict gene flow among populations and cause reproductive isolation of self-compatible (SC) lineages. Secondary contact between SC and self-incompatible (SI) lineages might re-establish gene flow if SC lineages remain capable of outcrossing. By contrast, intrinsic features of SC plants that reinforce high rates of self-fertilization could maintain evolutionary divergence between lineages. Arabidopsis lyrata subsp. lyrata is characterized by multiple origins of self-compatibility and high rates of self-fertilization in SC-dominated populations. It is unclear whether these high rates of selfing by SC plants have intrinsic or extrinsic causes. We estimated outcrossing rates and examined patterns of pollinator movement for 38 SC and 40 SI maternal parents sampled from an admixed array of 1509 plants sourced from six SC and six SI populations grown under uniform density. Although plants from SI populations had higher outcrossing rates (mean tm = 0.78 ± 0.05 SE) than plants from SC populations (mean tm = 0.56 ± 0.06 SE), outcrossing rates among SC plants were substantially higher than previous estimates from natural populations. Patterns of pollinator movement appeared to contribute to lower outcrossing rates for SC plants; we estimated that 40% of floral visits were geitonogamous (between flowers of the same plant). The relatively high rates of outcrossing for SC plants under standardized conditions indicate that selfing rates in natural SC populations of A. lyrata are facultative and driven by extrinsic features of A. lyrata, including patterns of pollinator movement.


2021 ◽  
Author(s):  
Quentin Rougemont ◽  
Charles Perrier ◽  
Anne-Laure Besnard ◽  
Isabelle Lebel ◽  
Yann Abdallah ◽  
...  

AbstractDeciphering the effects of historical and recent demographic processes responsible for the spatial patterns of genetic diversity and structure is a key objective in evolutionary and conservation biology. Using genetic analyses, we investigated the demographic history, the contemporary genetic diversity and structure, and the occurrence of hybridization and introgression, of two species of anadromous fish with contrasted life history strategies and which have undergone recent demographic declines, the allis shad (Alosa alosa) and the twaite shad (Alosa fallax). We genotyped 706 individuals from 20 rivers and 5 sites at sea in Southern Europe at microsatellite markers. Genetic structure between populations was lower for the nearly semelparous species allis shad that disperse stronger distance compared to the iteroparous species, twaite shad. Individuals caught at sea were assigned at the river level for twaite shad and at the region level for allis shad. Using an approximate Bayesian computation framework, we inferred that the most likely long term historical divergence scenario between both species implicated historical separation followed by secondary contact accompanied by strong population size decline. Accordingly, we found evidence of contemporary hybridization and introgression between both species. Besides, our results support the existence of cryptic species in the Mediterranean sea. Overall, our results shed light on the interplay between historical and recent demographic processes and life history strategies in shaping population genetic diversity and structure of closely related species. The recent demographic decline of these species’ populations and their hybridization should be carefully considered while implementing conservation programs.


Sign in / Sign up

Export Citation Format

Share Document