scholarly journals VAMP8 contributes to TRIM6-mediated type-I interferon antiviral response during West Nile virus infection

2018 ◽  
Author(s):  
Colm Atkins ◽  
Sarah van Tol ◽  
Preeti Bharaj ◽  
Ricardo Rajsbaum ◽  
Alexander N. Freiberg

ABSTRACTMembers of the tripartite motif (TRIM) family of E3 ubiquitin ligases regulate immune pathways including the antiviral type I interferon (IFN-I) system. Previously, we demonstrated that TRIM6 is involved in IFN-I induction and signaling. In absence of TRIM6 function, optimal IFN-I signaling is reduced, allowing increased replication of interferon-sensitive viruses. Despite numerous mechanisms to restrict vertebrate host’s IFN-I response, West Nile Virus (WNV) replication is sensitive to pre-treatment with IFN-I. However, the regulators and products of the IFN-I pathway important in regulating WNV replications are incompletely defined. Consistent with WNV’s sensitivity to IFN-I, we found that in TRIM6 knockout (TRIM6 KO) A549 cells WNV replication is significantly increased. Additionally, induction of Ifnb mRNA was delayed and the expression of several IFN-stimulated genes (ISGs) was reduced in TRIM6 KO cells. IFNβ pre-treatment was more effective in protecting against subsequent WNV infection in wt cells, indicating that TRIM6 contributes to the establishment of an IFN-induced antiviral response against WNV. Using next generation sequencing, we identified potential factors involved in this TRIM6-mediated antiviral response. One identified gene, VAMP8, is a soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) in the vesicle-associated membrane protein subfamily. Knockdown of VAMP8 resulted in reduced STAT1 phosphorylation and impaired induction of several ISGs following WNV infection or IFNβ treatment. Therefore, VAMP8 is a novel gene involved in the regulation of IFN-I signaling, and its expression is dependent on TRIM6 function. Overall, these results indicate that TRIM6 contributes to the antiviral response against WNV by regulating the IFN-I system.IMPORTANCEWNV is a mosquito-borne flavivirus that poses threat to human health across large discontinuous areas throughout the world. Infection with WNV results in febrile illness, which can progress to severe neurological disease. Currently, there are no approved treatment options to control WNV infection. Understanding the cellular immune responses that regulate viral replication is important in diversifying the resources available to control WNV. Here we show that the elimination of TRIM6 in human cells results in an increase in WNV replication and alters the expression and function of other components of the IFN-I pathway through VAMP8. Dissecting the interactions between WNV and host defenses both informs basic molecular virology and promotes the development of host- and viral-targeted antiviral strategies.

2019 ◽  
Author(s):  
Sarah van Tol ◽  
Colm Atkins ◽  
Preeti Bharaj ◽  
Kendra N. Johnson ◽  
Adam Hage ◽  
...  

ABSTRACTSeveral members of the tripartite motif (TRIM) family of E3 ubiquitin ligases regulate immune pathways including the antiviral type I interferon (IFN-I) system. Previously, we demonstrated that TRIM6 is involved in IFN-I induction and signaling. In the absence of TRIM6, optimal IFN-I signaling is reduced, allowing increased replication of interferon-sensitive viruses. Despite having evolved numerous mechanisms to restrict the vertebrate host’s IFN-I response, West Nile Virus (WNV) replication is sensitive to pre-treatment with IFN-I. However, the regulators and products of the IFN-I pathway that are important in regulating WNV replication are incompletely defined. Consistent with WNV’s sensitivity to IFN-I, we found that in TRIM6 knockout (TRIM6-KO) A549 cells WNV replication is significantly increased and IFN-I induction and signaling is impaired compared to wild-type (wt) cells. IFNβ pre-treatment was more effective in protecting against subsequent WNV infection in wt cells as compared to TRIM6-KO, indicating that TRIM6 contributes to the establishment of an IFN-induced antiviral response against WNV. Using next generation sequencing, we identified VAMP8 as a potential factor involved in this TRIM6-mediated antiviral response. VAMP8 knockdown resulted in reduced Jak1 and STAT1 phosphorylation and impaired induction of several ISGs following WNV infection or IFNβ treatment. Furthermore, VAMP8-mediated STAT1 phosphorylation required the presence of TRIM6. Therefore, the VAMP8 protein is a novel regulator of IFN-I signaling, and its expression and function is dependent on TRIM6 activity. Overall, these results provide evidence that TRIM6 contributes to the antiviral response against WNV and identified VAMP8 as a novel regulator of the IFN-I system.IMPORTANCEWNV is a mosquito-borne flavivirus that poses threat to human health across large discontinuous areas throughout the world. Infection with WNV results in febrile illness, which can progress to severe neurological disease. Currently, there are no approved treatment options to control WNV infection. Understanding the cellular immune responses that regulate viral replication is important in diversifying the resources available to control WNV. Here we show that the elimination of TRIM6 in human cells results in an increase in WNV replication and alters the expression and function of other components of the IFN-I pathway through VAMP8. Dissecting the interactions between WNV and host defenses both informs basic molecular virology and promotes the development of host- and viral-targeted antiviral strategies.


2019 ◽  
Vol 94 (2) ◽  
Author(s):  
Sarah van Tol ◽  
Colm Atkins ◽  
Preeti Bharaj ◽  
Kendra N. Johnson ◽  
Adam Hage ◽  
...  

ABSTRACT Several members of the tripartite motif (TRIM) family of E3 ubiquitin ligases regulate immune pathways, including the antiviral type I interferon (IFN-I) system. Previously, we demonstrated that TRIM6 is involved in IFN-I induction and signaling. In the absence of TRIM6, optimal IFN-I signaling is reduced, allowing increased replication of interferon-sensitive viruses. Despite having evolved numerous mechanisms to restrict the vertebrate host’s IFN-I response, West Nile virus (WNV) replication is sensitive to pretreatment with IFN-I. However, the regulators and products of the IFN-I pathway that are important in regulating WNV replication are incompletely defined. Consistent with WNV’s sensitivity to IFN-I, we found that in TRIM6 knockout (TRIM6-KO) A549 cells, WNV replication is significantly increased and IFN-I induction and signaling are impaired compared to wild-type (wt) cells. IFN-β pretreatment was more effective in protecting against subsequent WNV infection in wt cells than TRIM6-KO, indicating that TRIM6 contributes to the establishment of an IFN-induced antiviral response against WNV. Using next-generation sequencing, we identified VAMP8 as a potential factor involved in this TRIM6-mediated antiviral response. VAMP8 knockdown resulted in reduced JAK1 and STAT1 phosphorylation and impaired induction of several interferon-stimulated genes (ISGs) following WNV infection or IFN-β treatment. Furthermore, VAMP8-mediated STAT1 phosphorylation required the presence of TRIM6. Therefore, the VAMP8 protein is a novel regulator of IFN-I signaling, and its expression and function are dependent on TRIM6 activity. Overall, these results provide evidence that TRIM6 contributes to the antiviral response against WNV and identify VAMP8 as a novel regulator of the IFN-I system. IMPORTANCE WNV is a mosquito-borne flavivirus that poses a threat to human health across large discontinuous areas throughout the world. Infection with WNV results in febrile illness, which can progress to severe neurological disease. Currently, there are no approved treatment options to control WNV infection. Understanding the cellular immune responses that regulate viral replication is important in diversifying the resources available to control WNV. Here, we show that the elimination of TRIM6 in human cells results in an increase in WNV replication and alters the expression and function of other components of the IFN-I pathway through VAMP8. Dissecting the interactions between WNV and host defenses both informs basic molecular virology and promotes the development of host- and virus-targeted antiviral strategies.


2007 ◽  
Vol 81 (17) ◽  
pp. 9100-9108 ◽  
Author(s):  
Nigel Bourne ◽  
Frank Scholle ◽  
Maria Carlan Silva ◽  
Shannan L. Rossi ◽  
Nathan Dewsbury ◽  
...  

ABSTRACT Infection of cells with flaviviruses in vitro is reduced by pretreatment with small amounts of type I interferon (IFN-α/β). Similarly, pretreatment of animals with IFN and experiments using mice defective in IFN signaling have indicated a role for IFN in controlling flavivirus disease in vivo. These data, along with findings that flavivirus-infected cells block IFN signaling, suggest that flavivirus infection can trigger an IFN response. To investigate IFN gene induction by the very first cells infected during in vivo infection with the flavivirus West Nile virus (WNV), we infected mice with high-titer preparations of WNV virus-like particles (VLPs), which initiate viral genome replication in cells but fail to spread. These studies demonstrated a brisk production of IFN in vivo, with peak levels of over 1,000 units/ml detected in sera between 8 and 24 h after inoculation by either the intraperitoneal or footpad route. The IFN response was dependent on genome replication, and WNV genomes and WNV antigen-positive cells were readily detected in the popliteal lymph nodes (pLN) of VLP-inoculated mice. High levels of IFN mRNA transcripts and functional IFN were also produced in VLP-inoculated IFN regulatory factor 3 null (IRF3−/−) mice, indicating that IFN production was independent of the IRF3 pathways to IFN gene transcription, consistent with the IFN type produced (predominantly α).


PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e49494 ◽  
Author(s):  
Miguel Rodríguez-Pulido ◽  
Miguel A. Martín-Acebes ◽  
Estela Escribano-Romero ◽  
Ana-Belén Blázquez ◽  
Francisco Sobrino ◽  
...  

2019 ◽  
Vol 93 (6) ◽  
Author(s):  
Justin T. O’Neal ◽  
Amit A. Upadhyay ◽  
Amber Wolabaugh ◽  
Nirav B. Patel ◽  
Steven E. Bosinger ◽  
...  

ABSTRACTWest Nile virus (WNV) is a neurotropic mosquito-borne flavivirus of global importance. Neuroinvasive WNV infection results in encephalitis and can lead to prolonged neurological impairment or death. Type I interferon (IFN-I) is crucial for promoting antiviral defenses through the induction of antiviral effectors, which function to restrict viral replication and spread. However, our understanding of the antiviral response to WNV infection is mostly derived from analysis of bulk cell populations. It is becoming increasingly apparent that substantial heterogeneity in cellular processes exists among individual cells, even within a seemingly homogenous cell population. Here, we present WNV-inclusive single-cell RNA sequencing (scRNA-seq), an approach to examine the transcriptional variation and viral RNA burden across single cells. We observed that only a few cells within the bulk population displayed robust transcription of IFN-β mRNA, and this did not appear to depend on viral RNA abundance within the same cell. Furthermore, we observed considerable transcriptional heterogeneity in the IFN-I response, with genes displaying high unimodal and bimodal expression patterns. Broadly, IFN-stimulated genes negatively correlated with viral RNA abundance, corresponding with a precipitous decline in expression in cells with high viral RNA levels. Altogether, we demonstrated the feasibility and utility of WNV-inclusive scRNA-seq as a high-throughput technique for single-cell transcriptomics and WNV RNA detection. This approach can be implemented in other models to provide insights into the cellular features of protective immunity and identify novel therapeutic targets.IMPORTANCEWest Nile virus (WNV) is a clinically relevant pathogen responsible for recurrent epidemics of neuroinvasive disease. Type I interferon is essential for promoting an antiviral response against WNV infection; however, it is unclear how heterogeneity in the antiviral response at the single-cell level impacts viral control. Specifically, conventional approaches lack the ability to distinguish differences across cells with varying viral abundance. The significance of our research is to demonstrate a new technique for studying WNV infection at the single-cell level. We discovered extensive variation in antiviral gene expression and viral abundance across cells. This protocol can be applied to primary cells orin vivomodels to better understand the underlying cellular heterogeneity following WNV infection for the development of targeted therapeutic strategies.


2012 ◽  
Vol 86 (10) ◽  
pp. 5708-5718 ◽  
Author(s):  
A. Schuessler ◽  
A. Funk ◽  
H. M. Lazear ◽  
D. A. Cooper ◽  
S. Torres ◽  
...  

2018 ◽  
Author(s):  
Justin T. O’Neal ◽  
Amit A. Upadhyay ◽  
Amber Wolabaugh ◽  
Nirav B. Patel ◽  
Steven E. Bosinger ◽  
...  

ABSTRACTWest Nile virus (WNV) is a neurotropic mosquito-borne flavivirus of global importance. Neuroinvasive WNV infection results in encephalitis and can lead to prolonged neurological impairment or death. Type I interferon (IFN-I) is crucial for promoting antiviral defenses through the induction of antiviral effectors, which function to restrict viral replication and spread. However, our understanding of the antiviral response to WNV infection is mostly derived from analysis of bulk cell populations. It is becoming increasingly apparent that substantial heterogeneity in cellular processes exists among individual cells, even within a seemingly homogenous cell population. Here, we present WNV-inclusive single-cell RNA sequencing (scRNA-seq), an approach to examine the transcriptional variation and viral RNA burden across single cells. We observed that only a few cells within the bulk population displayed robust transcription of IFN-β mRNA, and this did not appear to depend on viral RNA abundance within the same cell. Furthermore, we observed considerable transcriptional heterogeneity in the IFN-I response, with genes displaying high unimodal and bimodal expression patterns. Broadly, IFN-stimulated genes negatively correlated with viral RNA abundance, corresponding with a precipitous decline in expression in cells with high viral RNA levels. Altogether, we demonstrated the feasibility and utility of WNV-inclusive scRNA-seq as a high-throughput technique for single-cell transcriptomics and WNV RNA detection. This approach can be implemented in other models to provide insights into the cellular features of protective immunity and identify novel therapeutic targets.IMPORTANCEWest Nile virus (WNV) is a clinically relevant pathogen responsible for recurrent epidemics of neuroinvasive disease. Type I interferon is essential for promoting an antiviral response against WNV infection; however, it is unclear how heterogeneity in the antiviral response at the single-cell level impacts viral control. Specifically, conventional approaches lack the ability to distinguish differences across cells with varying viral abundance. The significance of our research is to demonstrate a new technique for studying WNV infection at the single-cell level. We discovered extensive variation in antiviral gene expression and viral abundance across cells. This protocol can be applied to primary cells orin vivomodels to better understand the underlying cellular heterogeneity following WNV infection for the development of targeted therapeutic strategies.


2011 ◽  
Vol 85 (11) ◽  
pp. 5664-5668 ◽  
Author(s):  
S. Daffis ◽  
H. M. Lazear ◽  
W. J. Liu ◽  
M. Audsley ◽  
M. Engle ◽  
...  

2005 ◽  
Vol 15 (4) ◽  
pp. 397-400 ◽  
Author(s):  
Cindy Hoekstra

West Nile virus is a new challenge for transplant programs worldwide. It is a mosquito-borne disease, which has become increasingly prevalent in North America since it was first recognized in New York in 1999. A review of a case study and the literature shows that the morbidity and mortality associated with West Nile virus infection and transplant recipients are alarmingly high. Treatment options are limited because of transplant programs' limited experience in working with this virus. Transplant programs must develop action plans for education on West Nile virus and its prevention to decrease the risk of infection among their transplant recipients.


Sign in / Sign up

Export Citation Format

Share Document