scholarly journals The exhaustive genomic scan approach, with an application to rare-variant association analysis

2019 ◽  
Author(s):  
George Kanoungi ◽  
Michael Nothnagel ◽  
Tim Becker ◽  
Dmitriy Drichel

AbstractRegion-based genome-wide scans are usually performed by use of a priori chosen analysis regions. Such an approach will likely miss the region comprising the strongest signal and, thus, may result in increased type II error rates and decreased power. Here, we propose a genomic exhaustive scan approach that analyzes all possible subsequences and does not rely on a prior definition of the analysis regions. As a prime instance, we present a computationally ultra-efficient implementation using the rare-variant collapsing test for phenotypic association, the genomic exhaustive collapsing scan (GECS). Our implementation allows for the identification of regions comprising the strongest signals in large, genome-wide rare-variant association studies while controlling the family-wise error rate via permutation. Application of GECS to two genomic data sets revealed several novel significantly associated regions for age-related macular degeneration and for schizophrenia. Our approach also offers a high potential for genome-wide scans for selection, methylation and other analyses.

2020 ◽  
Author(s):  
Hana Susak ◽  
Laura Serra-Saurina ◽  
Raquel Rabionet Janssen ◽  
Laura Domènech ◽  
Mattia Bosio ◽  
...  

AbstractRare variants are thought to play an important role in the etiology of complex diseases and may explain a significant fraction of the missing heritability in genetic disease studies. Next-generation sequencing facilitates the association of rare variants in coding or regulatory regions with complex diseases in large cohorts at genome-wide scale. However, rare variant association studies (RVAS) still lack power when cohorts are small to medium-sized and if genetic variation explains a small fraction of phenotypic variance. Here we present a novel Bayesian rare variant Association Test using Integrated Nested Laplace Approximation (BATI). Unlike existing RVAS tests, BATI allows integration of individual or variant-specific features as covariates, while efficiently performing inference based on full model estimation. We demonstrate that BATI outperforms established RVAS methods on realistic, semi-synthetic whole-exome sequencing cohorts, especially when using meaningful biological context, such as functional annotation. We show that BATI achieves power above 75% in scenarios in which competing tests fail to identify risk genes, e.g. when risk variants in sum explain less than 0.5% of phenotypic variance. We have integrated BATI, together with five existing RVAS tests in the ‘Rare Variant Genome Wide Association Study’ (rvGWAS) framework for data analyzed by whole-exome or whole genome sequencing. rvGWAS supports rare variant association for genes or any other biological unit such as promoters, while allowing the analysis of essential functionalities like quality control or filtering. Applying rvGWAS to a Chronic Lymphocytic Leukemia study we identified eight candidate predisposition genes, including EHMT2 and COPS7A.Data availability and implementationAll relevant data are within the manuscript and pipeline implementation on https://github.com/hanasusak/rvGWASAuthor summaryComplex diseases are characterized by being related to genetic factors and environmental factors such as air pollution, diet etc. that together define the susceptibility of each individual to develop a given disease. Much effort has been applied to advance the knowledge of the genetic bases of such diseases, specially in the discovery of frequent genetic variants in the population increasing disease risk. However, these variants usually explain a little part of the etiology of such diseases. Previous studies have shown that rare variants, i.e. variants present in less than 1% of the population, may explain the rest of the variability related to genetic aspects of the disease.Genome sequencing offers the opportunity to discover rare variants, but powerful statistical methods are needed to discriminate those variants that induce susceptibility to the disease. Here we have developed a powerful and flexible statistical approach for the detection of rare variants associated with a disease and we have integrated it into a computer tool that is easy and intuitive for the researchers and clinicians to use. We have shown that our approach outperformed other common statistical methods specially in a situation where these variants explain just a small part of the disease. The discovery of these rare variants will contribute to the knowledge of the molecular mechanism of complex diseases.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. e1009241
Author(s):  
Alejandro Ochoa ◽  
John D. Storey

FST and kinship are key parameters often estimated in modern population genetics studies in order to quantitatively characterize structure and relatedness. Kinship matrices have also become a fundamental quantity used in genome-wide association studies and heritability estimation. The most frequently-used estimators of FST and kinship are method-of-moments estimators whose accuracies depend strongly on the existence of simple underlying forms of structure, such as the independent subpopulations model of non-overlapping, independently evolving subpopulations. However, modern data sets have revealed that these simple models of structure likely do not hold in many populations, including humans. In this work, we analyze the behavior of these estimators in the presence of arbitrarily-complex population structures, which results in an improved estimation framework specifically designed for arbitrary population structures. After generalizing the definition of FST to arbitrary population structures and establishing a framework for assessing bias and consistency of genome-wide estimators, we calculate the accuracy of existing FST and kinship estimators under arbitrary population structures, characterizing biases and estimation challenges unobserved under their originally-assumed models of structure. We then present our new approach, which consistently estimates kinship and FST when the minimum kinship value in the dataset is estimated consistently. We illustrate our results using simulated genotypes from an admixture model, constructing a one-dimensional geographic scenario that departs nontrivially from the independent subpopulations model. Our simulations reveal the potential for severe biases in estimates of existing approaches that are overcome by our new framework. This work may significantly improve future analyses that rely on accurate kinship and FST estimates.


2011 ◽  
Vol 04 (02) ◽  
pp. 119
Author(s):  
Mohammad Othman ◽  
Kari Branham ◽  
John R Heckenlively ◽  
◽  
◽  
...  

Age-related macular degeneration (AMD) is the main cause of vision loss and impairment in the aging population in developed countries. It is clinically and genetically a complex disease with both environmental and genetic factors affecting the outcome of the disease. Other than the wet type of AMD, there is no treatment for the other forms of AMD. It is estimated that the number of AMD patients will double in the next decade, which will have a significant financial impact on the health system and will compete for health dollars. Understanding the role of genetics in the development of AMD is paramount to help with diagnosis and future treatment. Over the past few years, we have studied the genetics of AMD and reported modest to significant association between AMD and several genes including CFH, ARMS2, TLR4 and ApoE. Our recent genome-wide association studies confirmed these AMD susceptibility loci in addition to other genes in the complement system (C2, C3, CFB and CFI). Recent studies identified new loci near TIMP3 and HDL influencing susceptibility to AMD.


2021 ◽  
Vol 17 (2) ◽  
pp. e1007784
Author(s):  
Hana Susak ◽  
Laura Serra-Saurina ◽  
German Demidov ◽  
Raquel Rabionet ◽  
Laura Domènech ◽  
...  

Rare variants are thought to play an important role in the etiology of complex diseases and may explain a significant fraction of the missing heritability in genetic disease studies. Next-generation sequencing facilitates the association of rare variants in coding or regulatory regions with complex diseases in large cohorts at genome-wide scale. However, rare variant association studies (RVAS) still lack power when cohorts are small to medium-sized and if genetic variation explains a small fraction of phenotypic variance. Here we present a novel Bayesian rare variant Association Test using Integrated Nested Laplace Approximation (BATI). Unlike existing RVAS tests, BATI allows integration of individual or variant-specific features as covariates, while efficiently performing inference based on full model estimation. We demonstrate that BATI outperforms established RVAS methods on realistic, semi-synthetic whole-exome sequencing cohorts, especially when using meaningful biological context, such as functional annotation. We show that BATI achieves power above 70% in scenarios in which competing tests fail to identify risk genes, e.g. when risk variants in sum explain less than 0.5% of phenotypic variance. We have integrated BATI, together with five existing RVAS tests in the ‘Rare Variant Genome Wide Association Study’ (rvGWAS) framework for data analyzed by whole-exome or whole genome sequencing. rvGWAS supports rare variant association for genes or any other biological unit such as promoters, while allowing the analysis of essential functionalities like quality control or filtering. Applying rvGWAS to a Chronic Lymphocytic Leukemia study we identified eight candidate predisposition genes, including EHMT2 and COPS7A.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2267
Author(s):  
Tobias Strunz ◽  
Christina Kiel ◽  
Bastian L. Sauerbeck ◽  
Bernhard H. F. Weber

Over the last 15 years, genome-wide association studies (GWAS) have greatly advanced our understanding of the genetic landscape of complex phenotypes. Nevertheless, causal interpretations of GWAS data are challenging but crucial to understand underlying mechanisms and pathologies. In this review, we explore to what extend the research community follows up on GWAS data. We have traced the scientific activities responding to the two largest GWAS conducted on age-related macular degeneration (AMD) so far. Altogether 703 articles were manually categorized according to their study type. This demonstrates that follow-up studies mainly involve “Review articles” (33%) or “Genetic association studies” (33%), while 19% of publications report on findings from experimental work. It is striking to note that only three of 16 AMD-associated loci described de novo in 2016 were examined in the four-year follow-up period after publication. A comparative analysis of five studies on gene expression regulation in AMD-associated loci revealed consistent gene candidates for 15 of these loci. Our random survey highlights the fact that functional follow-up studies on GWAS results are still in its early stages hampering a significant refinement of the vast association data and thus a more accurate insight into mechanisms and pathways.


Sign in / Sign up

Export Citation Format

Share Document