scholarly journals Targeting against HIV/HCV Co-infection using Machine Learning-based multitarget-quantitative structure-activity relationships (mt-QSAR) Methods

2019 ◽  
Author(s):  
Yu Wei ◽  
Wei Li ◽  
Tengfei Du ◽  
Zhangyong Hong ◽  
Jianping Lin

ABSTRACTCo-infection between HIV-1 and HCV is common today in certain populations. However, treatment of co-infection is full of challenges with special consideration for potential hepatic safety and drug-drug interactions. Multitarget inhibitors with less toxicity may provide a promising therapeutic strategy for HIV/HCV co-infection. However, identification of one molecule acting on multiple targets simultaneously by experimental evaluation is costly and time-consuming. In silico target prediction tools provide more opportunities for the development of multitarget inhibitors. In this study, by combining naive Bayesian (NB) and support vector machine (SVM) algorithms with two types of molecular fingerprints (MACCS and ECFP6), 60 classification models were constructed to predict the active compounds toward 11 HIV-1 targets and 4 HCV targets based on the multitarget-quantitative structure-activity relationships (mt-QSAR). 5-fold cross-validation and test set validation was performed to confirm the performance of 60 classification models. Our results show that 60 mt-QSAR models appeared to have high classification accuracy in terms of ROC-AUC values ranging from 0.83 to 1 with a mean value of 0.97 for HIV-1 models, and ROC-AUC values ranging from 0.84 to 1 with a mean value of 0.96 for HCV. Furthermore, the 60 models were applied to comprehensively predict the potential targets for additional 46 compounds including 27 approved HIV-1 drugs, 10 approved HCV drugs and 9 selected compounds known to be active on one or more targets of HIV-1 or those of HCV. Finally, 18 hits including 7 HIV-1 approved drugs, 4 HCV approved drugs and 7 compounds were predicted to be HIV/HCV co-infection multitarget inhibitors. The reported bioactivity data confirmed that 7 compounds actually interacted with HIV-1 and HCV targets simultaneously with diverse binding affinities. Of those remaining predicted hits and chemical-protein interaction pairs involving the potential ability to suppress HIV/HCV co-infection deserve further investigation by experiments. This investigation shows that the mt-QSAR method is available to predict chemical-protein interaction for discovering multitarget inhibitors and provide a unique perspective on HIV/HCV co-infection treatment.

2019 ◽  
Vol 20 (14) ◽  
pp. 3572 ◽  
Author(s):  
Yu Wei ◽  
Wei Li ◽  
Tengfei Du ◽  
Zhangyong Hong ◽  
Jianping Lin

Human immunodeficiency virus type-1 and hepatitis C virus (HIV/HCV) coinfection occurs when a patient is simultaneously infected with both human immunodeficiency virus type-1 (HIV-1) and hepatitis C virus (HCV), which is common today in certain populations. However, the treatment of coinfection is a challenge because of the special considerations needed to ensure hepatic safety and avoid drug–drug interactions. Multitarget inhibitors with less toxicity may provide a promising therapeutic strategy for HIV/HCV coinfection. However, the identification of one molecule that acts on multiple targets simultaneously by experimental evaluation is costly and time-consuming. In silico target prediction tools provide more opportunities for the development of multitarget inhibitors. In this study, by combining Naïve Bayes (NB) and support vector machine (SVM) algorithms with two types of molecular fingerprints, MACCS and extended connectivity fingerprints 6 (ECFP6), 60 classification models were constructed to predict compounds that were active against 11 HIV-1 targets and four HCV targets based on a multiple quantitative structure–activity relationships (multiple QSAR) method. Five-fold cross-validation and test set validation were performed to measure the performance of the 60 classification models. Our results show that the 60 multiple QSAR models appeared to have high classification accuracy in terms of the area under the ROC curve (AUC) values, which ranged from 0.83 to 1 with a mean value of 0.97 for the HIV-1 models and from 0.84 to 1 with a mean value of 0.96 for the HCV models. Furthermore, the 60 models were used to comprehensively predict the potential targets of an additional 46 compounds, including 27 approved HIV-1 drugs, 10 approved HCV drugs and nine selected compounds known to be active against one or more targets of HIV-1 or HCV. Finally, 20 hits, including seven approved HIV-1 drugs, four approved HCV drugs, and nine other compounds, were predicted to be HIV/HCV coinfection multitarget inhibitors. The reported bioactivity data confirmed that seven out of nine compounds actually interacted with HIV-1 and HCV targets simultaneously with diverse binding affinities. The remaining predicted hits and chemical-protein interaction pairs with the potential ability to suppress HIV/HCV coinfection are worthy of further experimental investigation. This investigation shows that the multiple QSAR method is useful in predicting chemical-protein interactions for the discovery of multitarget inhibitors and provides a unique strategy for the treatment of HIV/HCV coinfection.


2017 ◽  
Vol 16 (05) ◽  
pp. 1750038 ◽  
Author(s):  
Abolfazl Barzegar ◽  
Hossein Hamidi

Human immunodeficiency virus-1 (HIV-1) integrase appears to be a crucial target for developing new anti-HIV-1 therapeutic agents. Different quantitative structure–activity relationships (QSARs) algorithms have been used in order to develop efficient model(s) to predict the activity of new pyridinone derivatives against HIV-1 integrase. Multiple linear regression (MLR) and combined principal component analysis (PCA) with MLR have been applied to build QSAR models for a set of new pyridinone derivatives as potent anti-HIV-1 therapeutic agents. Four different approaches based on MLR method including; concrete-MLR, stepwise-MLR, concrete PCA–MLR and stepwise PCA–MLR were utilized for this aim. Twenty two different sets of descriptors containing 1613 descriptors were constructed for each optimized molecule. Comparison between predictability of the “concrete” and “stepwise” procedure in two different algorithms of MLR and PCA models indicated the advantage of the stepwise procedure over that of the simple concrete method. Although the PCA was employed for dimension reduction, using stepwise PCA–MLR model showed that the method has higher ability to predict the compounds’ activity. The stepwise PCA–MLR model showed highly validated statistical results both in fitting and prediction processes ([Formula: see text] and [Formula: see text]). Therefore, using stepwise PCA approach is suitable to remove ineffective descriptors, which results in remaining efficient descriptors for building good predictability stepwise PCA–MLR. The stepwise hybrid approach of PCA–MLR may be useful in derivation of highly predictive and interpretable QSAR models.


2017 ◽  
Vol 2 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Natalia Sizochenko ◽  
Jerzy Leszczynski

Polymeric nanoparticles represent attractive targets for the controlled delivery of therapeutic drugs. Drug-nanoparticle conjugates are convenient targets to enhance solubility and membrane permeability of drugs, prolong circulation time and minimize non-specific uptake. The behavior of drugs-loaded nanoparticles is governed by various factors. Understanding of these effects is very important for design of drug-nanoparticle systems, that could be suitable for treating the particular diseases. The aim of the current study is a complementary molecular docking followed by quantitative structure-activity relationships modeling for drugs payload on polymeric nanoparticles. Twenty-one approved drugs were considered. Docking of drugs was performed towards a simplified polymeric surface. Binding energies agreed well with the observed mass loading. Quantitative structure-activity relationships model supported this data. Effects of electronegativity and hydrophobicity were discussed. Developed model may contribute to the development of other useful nano-sized polymeric drug carriers to deliver a spectrum of therapeutic and imaging agents for medical purposes.


Sign in / Sign up

Export Citation Format

Share Document