scholarly journals Body size but not age influences phototaxis in bumble bee (Bombus terrestris, L.) workers

2019 ◽  
Author(s):  
Michal Merling ◽  
Shmuel Eisenmann ◽  
Guy Bloch

AbstractWe studied phototaxis, the directional movement relative to light, in the bumble bee Bombus terrestris. We first developed and validated a MATLAB based system enabling reliable high-resolution tracking of a bee and a measurement of her distance relative to a changing LED light source. Using this system we found in all our experiments that workers show positive phototaxis. The strength of the phototactic response was influenced by body size but not age, and this effect was significant when the light source was weak. In a separate experiment, foragers showed stronger phototactic response compared to nurses only in one of two trials in which they were larger and tested with weak light intensity. The evidence that phototaxis is associated with size-based division of labor in the bumble bee and with age-related division of labor in the honey bee, lends credence to response threshold models implicating the response to light in the organization of division of labor in cavity dwelling social insects.

2020 ◽  
Author(s):  
Jacob G. Holland ◽  
Shinnosuke Nakayama ◽  
Maurizio Porfiri ◽  
Oded Nov ◽  
Guy Bloch

ABSTRACTSpecialization and plasticity are important for many forms of collective behavior, but the interplay between these factors is little understood. In insect societies, workers are often predisposed to specialize in different tasks, sometimes with morphological or physiological adaptations, facilitating a division of labor. Workers may also plastically switch between tasks or vary their effort. The degree to which predisposed specialization limits plasticity is not clear and has not been systematically tested in ecologically relevant contexts. We addressed this question in 20 freely-foraging bumble bee (Bombus terrestris) colonies by continually manipulating colonies to contain either a typically diverse or reduced (“homogeneous”) worker body size distribution, over two trials. Pooling both trials, diverse colonies did better in several indices of colony performance. The importance of body size was further demonstrated by the finding that foragers were larger than nurses even in homogeneous colonies with a very narrow body size range. However, the overall effect of size diversity stemmed mostly from one trial. In the other trial, homogeneous and diverse colonies showed comparable performance. By comparing behavioral profiles based on several thousand observations, we found evidence that workers in homogeneous colonies in this trial rescued colony performance by plastically increasing behavioral specialization and/or individual effort, compared to same-sized individuals in diverse colonies. Our results are consistent with a benefit to colonies of predisposed (size-diverse) specialists under certain conditions, but also suggest that plasticity or effort, can compensate for reduced (size-related) specialization. Thus, we suggest that an intricate interplay between specialization and plasticity is functionally adaptive in bumble bee colonies.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 236
Author(s):  
Jacob Holland ◽  
Shinnosuke Nakayama ◽  
Maurizio Porfiri ◽  
Oded Nov ◽  
Guy Bloch

Specialisation and plasticity are important for many forms of collective behaviour, but the interplay between these factors is little understood. In insect societies, workers are often developmentally primed to specialise in different tasks, sometimes with morphological or physiological adaptations, facilitating a division of labour. Workers may also plastically switch between tasks or vary their effort. The degree to which developmentally primed specialisation limits plasticity is not clear and has not been systematically tested in ecologically relevant contexts. We addressed this question in 20 free-foraging bumble bee (Bombus terrestris) colonies by continually manipulating colonies to contain either a typically diverse, or a reduced (“homogeneous”), worker body size distribution while keeping the same mean body size, over two trials. Pooling both trials, diverse colonies produced a larger comb mass, an index of colony performance. The link between body size and task was further corroborated by the finding that foragers were larger than nurses even in homogeneous colonies with a very narrow body size range. However, the overall effect of size diversity stemmed mostly from one trial. In the other trial, homogeneous and diverse colonies showed comparable performance. By comparing behavioural profiles based on several thousand observations of individuals, we found evidence that workers in homogeneous colonies in this trial rescued colony performance by plastically increasing behavioural specialisation and/or individual effort, compared to same-sized individuals in diverse colonies. Our results are consistent with a benefit to colonies of large and small specialists under certain conditions, but also suggest that plasticity or effort can compensate for reduced (size-related) specialisation. Thus, we suggest that an intricate interplay between specialisation and plasticity is functionally adaptive in bumble bee colonies.


2019 ◽  
Author(s):  
Atul Pandey ◽  
Uzi Motro ◽  
Guy Bloch

AbstractJuvenile hormone (JH) is a key regulator of insect development and reproduction. Given that JH commonly affects adult insect fertility, it has been hypothesized to also regulate behaviors such as dominance and aggression that are associated with reproduction. We tested this hypothesis in the bumble bee Bombus terrestris for which JH has been shown to be the major gonadotropin. We used the allatoxin Precocene-I (P-I) to reduce hemolymph JH titers and replacement therapy with the natural JH to revert this effect. In small orphan groups of workers with similar body size but mixed treatment, P-I treated bees showed lower aggressiveness, oogenesis, and dominance rank compared with control and replacement therapy treated bees. In similar groups in which all bees were treated similarly, there was a clear dominance hierarchy, even in P-I and replacement therapy treatment groups in which the bees showed similar levels of ovarian activation. In a similar experiment in which bees differed in body size, larger bees were more likely to be dominant despite their similar JH treatment and ovarian state. In the last experiment, we show that JH manipulation does not affect dominance rank in groups that had already established a stable dominance hierarchy. These findings solve previous ambiguities concerning whether or not JH affects dominance in bumble bees. JH positively affects dominance, but bees with similar levels of JH can nevertheless establish dominance hierarchies. Thus, multiple factors including JH, body size, and previous experience affect dominance and aggression in social bumble bees.


Apidologie ◽  
2020 ◽  
Vol 51 (5) ◽  
pp. 763-776 ◽  
Author(s):  
Michal Merling ◽  
Shmuel Eisenmann ◽  
Guy Bloch

Ecology ◽  
2021 ◽  
Author(s):  
Jennifer I. Van Wyk ◽  
Eugene R. Amponsah ◽  
Wee Hao Ng ◽  
Lynn S. Adler
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcel Mertes ◽  
Julie Carcaud ◽  
Jean-Christophe Sandoz

AbstractSociality is classified as one of the major transitions in evolution, with the largest number of eusocial species found in the insect order Hymenoptera, including the Apini (honey bees) and the Bombini (bumble bees). Bumble bees and honey bees not only differ in their social organization and foraging strategies, but comparative analyses of their genomes demonstrated that bumble bees have a slightly less diverse family of olfactory receptors than honey bees, suggesting that their olfactory abilities have adapted to different social and/or ecological conditions. However, unfortunately, no precise comparison of olfactory coding has been performed so far between honey bees and bumble bees, and little is known about the rules underlying olfactory coding in the bumble bee brain. In this study, we used in vivo calcium imaging to study olfactory coding of a panel of floral odorants in the antennal lobe of the bumble bee Bombus terrestris. Our results show that odorants induce reproducible neuronal activity in the bumble bee antennal lobe. Each odorant evokes a different glomerular activity pattern revealing this molecule’s chemical structure, i.e. its carbon chain length and functional group. In addition, pairwise similarity among odor representations are conserved in bumble bees and honey bees. This study thus suggests that bumble bees, like honey bees, are equipped to respond to odorants according to their chemical features.


2007 ◽  
Vol 103 (4) ◽  
pp. 1172-1179 ◽  
Author(s):  
Christopher R. Woodman ◽  
Daniel W. Trott ◽  
M. Harold Laughlin

We tested the hypothesis that short-term increases in intraluminal pressure improve endothelium-dependent dilation and increase endothelial nitric oxide (NO) synthase (eNOS) expression in senescent soleus muscle feed arteries (SFA). SFA isolated from young (4 mo) and old (24 mo) Fischer 344 rats were cannulated and pressurized at 90 (p90) or 130 (p130) cmH2O for 4 h. At the end of the 4-h protocol, pressure in p130 SFA was lowered to 90 cmH2O for examination of endothelium-dependent (flow- or ACh-induced) vasodilation. Flow- and ACh-induced dilations were blunted in old p90 SFA relative to young p90 SFA. Pretreatment with increased pressure (p130) improved flow- and ACh-induced dilations in old SFA, such that vasodilator responses were similar to those in young SFA. In the presence of Nω-nitro-l-arginine (l-NNA) or l-NNA + indomethacin (Indo), flow-induced dilation was inhibited in old p130 SFA, such that the response was not greater than the response in old p90 SFA. In old p130 SFA, ACh-induced dilation was inhibited by l-NNA + Indo (not l-NNA alone). In a separate experiment, SFA were pressurized at 70, 90, 110, or 130 cmH2O for 4 h, and eNOS mRNA and protein content were assessed. Increased pressure induced eNOS mRNA expression in young (not old) SFA. eNOS protein content was not altered in young or old SFA. These results indicate that short-term increases in intraluminal pressure improve endothelium-dependent dilation in senescent SFA, in part by enhancing NO bioavailability; however, the beneficial effect was not associated with increased eNOS expression.


Sign in / Sign up

Export Citation Format

Share Document