scholarly journals Long-Term Potentiation Induces Extrasynaptic Exocytosis of Glun2A-containing NMDA Receptors that is Mainly Controlled by SNAP23

2019 ◽  
Author(s):  
Xiaojun Yu ◽  
Wei Li ◽  
Tong Wang

AbstractNMDA receptors (NMDAR) are key players in the initiation of synaptic plasticity that underlies learning and memory. Long-term potentiation (LTP) of synapses require an increased calcium current via NMDA channels to trigger modifications in postsynaptic density (PSD). It is generally believed that the amount of NMDARs on the postsynaptic surface remains stationary, whereas their subunit composition is dynamically fluctuated during this plasticity process. However, the molecular machinery underlying this subunit-specific regulation remains largely elusive. Here, by detecting the time-lapse changes of surface GluN2A and GluN2B subunit levels using biochemical approaches, surface immunostaining, live-imaging and super-resolution microscopy, we uncovered a transient increase of surface GluN2A-type NMDARs shortly after the induction of chemical long term potentiation (cLTP). These augmented sub-diffraction-limited GluN2A clusters predominantly exist in extrasynaptic domains. We also showed that the spine-enriched SNARE associated protein SNAP-23, and to a minor extent its homologue SNAP-25, control both the basal and regulated surface level of GluN2A receptors. Using a total internal reflection fluorescence microscopy (TIRFM) based live-imaging assay, we resolved and analyzed individual exocytic events of NMDARs in live neurons and found that cLTP raised the frequency of NMDAR exocytosis at extrasynaptic regions, without altering the duration or the package size of these events. Our study thereby provides direct evidence that synaptic plasticity controls the postsynaptic exocytosis machinery, which induces the insertion of more GluN2A receptors into the extrasynaptic area.Significance StatementMemory formation involves the long-term modification of synapses, which is called synaptic plasticity. In the postsynaptic density (PSD) of excited neurons, this modification process occurs on a minute timescale, initiated by the opening of NMDARs that trigger downstream cascades to fix the potentiation (LTP) at specific synapses for longer timescales. Here, using a novel live-imaging assay we resolved the dynamic delivery of NMDARs to the cell surface, and found that only the insertion frequency, not the duration of individual insertion or number of GluN2A subunits each of these NMDAR vesicles contains, was altered during the synaptic potentiation process. We also identified SNAP-23 as the key molecule mediating this activity dependent NMDAR surface delivery. This study provides a novel mechanism of how NMDARs are regulated in the short window to initiate the long-lasting synaptic modifications.

1999 ◽  
Vol 77 (9) ◽  
pp. 735-737 ◽  
Author(s):  
John TR Isaac ◽  
Roger A Nicoll ◽  
Robert C Malenka

Excitatory synaptic transmission in the mammalian brain is mediated primarily by α-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors that are thought to be co-localized at individual synapses. However, recent electrophysiological and anatomical data suggest that the synaptic localization of AMPA and NMDA receptors may be independently regulated by neural activity. These data are reviewed here and the implications of these findings for the mechanisms underlying synaptic plasticity are discussed.Key words: glutamate receptor, long-term potentiation (LTP), synaptic plasticity, hippocampus, cortex.


2019 ◽  
Author(s):  
Mason L. Yeh ◽  
Jessica R. Yasko ◽  
Eric S. Levine ◽  
Betty A. Eipper ◽  
Richard E. Mains

AbstractKalirin-7 (Kal7) is a Rac1/RhoG GEF and multidomain scaffold localized to the postsynaptic density which plays an important role in synaptic plasticity. Behavioral and physiological phenotypes observed in the Kal7 knockout mouse are quite specific: genetics of breeding, growth, strength and coordination are normal; Kal7 knockout animals self-administer cocaine far more than normal mice, show exaggerated locomotor responses to cocaine, but lack changes in dendritic spine morphology seen in wildtype mice; Kal7 knockout mice have depressed surface expression of GluN2B receptor subunits and exhibit marked suppression of long-term potentiation and depression in hippocampus, cerebral cortex, and spinal cord; and Kal7 knockout mice have dramatically blunted perception of pain. To address the underlying cellular and molecular mechanisms which are deranged by loss of Kal7, we administered intracellular blocking peptides to acutely change Kal7 function at the synapse, to determine if plasticity deficits in Kal7-/-mice are the product of developmental processes since conception, or could be detected on a much shorter time scale. We found that specific disruption of the interactions of Kal7 with PSD-95 or GluN2B resulted in significant suppression of long-term potentiation and long-term depression. Biochemical approaches indicated that Kal7 interacted with PSD-95 at multiple sites within Kal7.Graphical Table of ContentsThe postsynaptic density is an integral player in receiving, interpreting and storing signals transmitted by presynaptic terminals. The correct molecular composition is crucial for successful expression of synaptic plasticity. Key components of the postsynaptic density include ligand-gated ion channels, structural and binding proteins, and multidomain scaffolding plus enzymatic proteins. These studies address whether the multiple components of the synaptic density bind together in a static or slowly adapting molecular complex, or whether critical interactions are fluid on a minute-to-minute basis.


2020 ◽  
Author(s):  
Wenting Su ◽  
Jianan Yu ◽  
Min Li ◽  
Ke Wang ◽  
Chang Liu ◽  
...  

Abstract Background Parkinson's disease is characterized by abnormal synaptic transmission in the corticostriatal circuit that leads to deficits in motor abilities. Electro-acupuncture has shown to improve the motor behaviors in parkinsonian models. However, the potential mechanisms underlying the electro-acupuncture treatment, specifically in the partial-lesioned model, remain unclear. Methods By utilizing multiple approaches, including electrophysiological, immunohistochemistrical, molecular and behavioral methods, we assessed the effect of electro-acupuncture on the motor dysfunction and striatal synaptic plasticity in a partial-lesioned mouse model induced by intrastriatal injection of 6-hydroxydopamine. Results Electro-acupuncture ameliorated the disrupted gross and fine motor skills in 6-hydroxydopamine-lesioned mice. Notably, electro-acupuncture not only restored the injured corticostriatal long-term potentiation, but also reversed the loss of GluN1-containing NMDA receptors and GluA1-containing AMPA receptors in the striatum. Furthermore, the antagonists selective for AMPA receptors and NMDA receptors blocked the effect of electro-acupuncture on the corticostriatal long-term potentiation in 6-hydroxydopamine-treated mice. Conclusions These data suggest that the postsynaptic glutamate receptors in the striatum undergo the maladaptive changes in the early stage of Parkinson's disease. Electro-acupuncture improves the motor skills via a mechanism involving the modulation of corticostriatal synaptic plasticity and specific glutamate receptors in a partial-lesioned rodent model.


2020 ◽  
Vol 17 (4) ◽  
pp. 354-360 ◽  
Author(s):  
Yu-Xing Ge ◽  
Ying-Ying Lin ◽  
Qian-Qian Bi ◽  
Yu-Juan Chen

Background: Patients with temporal lobe epilepsy (TLE) usually suffer from cognitive deficits and recurrent seizures. Brivaracetam (BRV) is a novel anti-epileptic drug (AEDs) recently used for the treatment of partial seizures with or without secondary generalization. Different from other AEDs, BRV has some favorable properties on synaptic plasticity. However, the underlying mechanisms remain elusive. Objective: The aim of this study was to explore the neuroprotective mechanism of BRV on synaptic plasticity in experimental TLE rats. Methods: The effect of chronic treatment with BRV (10 mg/kg) was assessed on Pilocarpine induced TLE model through measurement of the field excitatory postsynaptic potentials (fEPSPs) in vivo. Differentially expressed synaptic vesicle protein 2A (SV2A) were identified with immunoblot. Then, fast phosphorylation of synaptosomal-associated protein 25 (SNAP-25) during long-term potentiation (LTP) induction was performed to investigate the potential roles of BRV on synaptic plasticity in the TLE model. Results: An increased level of SV2A accompanied by a depressed LTP in the hippocampus was shown in epileptic rats. Furthermore, BRV treatment continued for more than 30 days improved the over-expression of SV2A and reversed the synaptic dysfunction in epileptic rats. Additionally, BRV treatment alleviates the abnormal SNAP-25 phosphorylation at Ser187 during LTP induction in epileptic ones, which is relevant to the modulation of synaptic vesicles exocytosis and voltagegated calcium channels. Conclusion: BRV treatment ameliorated the over-expression of SV2A in the hippocampus and rescued the synaptic dysfunction in epileptic rats. These results identify the neuroprotective effect of BRV on TLE model.


1991 ◽  
Vol 65 (1) ◽  
pp. 20-32 ◽  
Author(s):  
Y. Komatsu ◽  
S. Nakajima ◽  
K. Toyama

1. Intracellular recording was made from layer II-III cells in slice preparations of kitten (30-40 days old) visual cortex. Low-frequency (0.1 Hz) stimulation of white matter (WM) usually evoked an excitatory postsynaptic potential (EPSP) followed by an inhibitory postsynaptic potential (IPSP). The postsynaptic potentials (PSPs) showed strong dependence on stimulus frequency. Early component of EPSP and IPSP evoked by weak stimulation both decreased monotonically at frequencies greater than 0.5-1 Hz. Strong stimulation similarly depressed the early EPSP at higher frequencies (greater than 2 Hz) and replaced the IPSP with a late EPSP, which had a maximum amplitude in the stimulus frequency range of 2-5 Hz. 2. Very weak WM stimulation sometimes evoked EPSPs in isolation from IPSPs. The falling phase of the EPSP revealed voltage dependence characteristic to the responses mediated by N-methyl-D-aspartate (NMDA) receptors and was depressed by application of an NMDA antagonist DL-2-amino-5-phosphonovalerate (APV), whereas the rising phase of the EPSP was insensitive to APV. 3. The early EPSPs followed by IPSPs were insensitive to APV but were replaced with a slow depolarizing potential by application of a non-NMDA antagonist 6,7-dinitro-quinoxaline-2,3-dione (DNQX), indicating that the early EPSP is mediated by non-NMDA receptors. The slow depolarization was mediated by NMDA receptors because it was depressed by membrane hyperpolarization or addition of APV. 4. The late EPSP evoked by higher-frequency stimulation was abolished by APV, indicating that it is mediated by NMDA receptors, which are located either on the recorded cell or on presynaptic cells to the recorded cells. 5. Long-term potentiation (LTP) of EPSPs was examined in cells perfused with solutions containing 1 microM bicuculline methiodide (BIM), a gamma-aminobutyric acid (GABA) antagonist. WM was stimulated at 2 Hz for 15 min as a conditioning stimulus to induce LTP, and the resultant changes were tested by low-frequency (0.1 Hz) stimulation of WM. 6. LTP of early EPSPs occurred in more than one-half of the cells (8/13) after strong conditioning stimulation. The rising slope of the EPSP was increased 1.6 times on average. 7. To test involvement of NMDA receptors in the induction of LTP in the early EPSP, the effect of conditioning stimulation was studied in a solution containing 100 microM APV, which was sufficient to block completely synaptic transmission mediated by NMDA receptors. LTP occurred in the same frequency and magnitude as in control solution.


Sign in / Sign up

Export Citation Format

Share Document