scholarly journals Structural basis of recruitment of RBM39 to DCAF15 by a sulfonamide molecular glue E7820

2019 ◽  
Author(s):  
Xinlin Du ◽  
Oleg Volkov ◽  
Robert Czerwinski ◽  
HuiLing Tan ◽  
Carlos Huerta ◽  
...  

AbstractE7820 and indisulam are two examples of aryl sulfonamides that recruit RBM39 to Rbx-Cul4-DDA1-DDB1-DCAF15 E3 ligase complex, leading to its ubiquitination and degradation by the proteasome. In order to understand their mechanism of action, we carried out kinetic analysis on the recruitment of RBM39 to DCAF15 and solved a crystal structure of DDA1-DDB1-DCAF15 in complex with E7820 and the RRM2 domain of RBM39. E7820 packs in a shallow pocket on the surface of DCAF15 and the resulting modified interface binds RBM39 through the α1 helix of RRM2 domain. Our kinetic studies revealed that aryl sulfonamide and RBM39 bind to DCAF15 in a synergistic manner. The structural and kinetic studies confirm aryl sulfonamides as molecular glues in the recruitment of RBM39 and provide a framework for future efforts to utilize DCAF15 to degrade other protein of interests.

2020 ◽  
Author(s):  
Yachun Lin ◽  
Qinli Hu ◽  
Jia Zhou ◽  
Weixiao Yin ◽  
Deqiang Yao ◽  
...  

AbstractOomycete pathogens such as Phytophthora secrete a repertoire of effectors to host cells to manipulate host immunity and benefit infection. In this study, we found that an RxLR effector, Avr1d, promoted Phytophthora sojae infection in soybean hairy-roots. Using a yeast two-hybrid screen, we identified the soybean E3 ubiquitin ligase GmPUB13 as a host target for Avr1d. By co-immunoprecipitation, gel infiltration and ITC assays, we confirmed that Avr1d interacts with GmPUB13 both in vivo and in vitro. Furthermore, we found that Avr1d inhibits the E3 ligase activity of GmPUB13. The crystal structure of Avr1d in complex with GmPUB13 was solved and revealed that Avr1d occupies the binding site for E2 ubiquitin conjugating enzyme on GmPUB13. In line with this, Avr1d competed with E2 ubiquitin conjugating enzymes for GmPUB13 binding in vitro, thereby decreasing the E3 ligase activity of GmPUB13. Meanwhile, we found that inactivation of the ubiquitin ligase activity of GmPUB13 stabilized GmPUB13 by blocking GmPUB13 degradation. Silencing of GmPUB13 in soybean hairy-roots decreased P. sojae infection, suggesting that GmPUB13 acts as a susceptibility factor, negatively regulating soybean resistance against P. sojae. Altogether, this study highlights a novel virulence mechanism of Phytophthora effectors, by which Avr1d competes with E2 for GmPUB13 binding to repress the GmPUB13 E3 ligase activity and thereby stabilizing the susceptibility factor GmPUB13 to facilitate Phytophthora infection. This is the first study to unravel the structural basis for modulation of host targets by Phytophthora effectors and will be instrumental for boosting plant resistance breeding.Significance StatementUbiquitination acts as a crucial regulator in plant immunity. Accordingly, microbial pathogens secrete effectors to hijak host ubiquitination system. However, the molecular mechanisms by which microbial effectors modulate host ubiquitination system are not yet clear. Here, we found that the Phytophthora sojae effector Avr1d physically binds to the U-box type E3 ligase GmPUB13, a susceptibility factor in soybean. The crystal structure of Avr1d in complex with GmPUB13 revealed that Avr1d occupies the binding site in GmPUB13 for the E2 ubiquitin conjugating enzyme and competes with E2 for physical binding to GmPUB13. Avr1d stabilized GmPUB13 by suppressing the self-ubiquitination activity of GmPUB13 and thereby promoting Phytophthora infection. This study provides structural basis for modulation of host targets by Phytophthora effectors.


2009 ◽  
Vol 20 (15) ◽  
pp. 3514-3524 ◽  
Author(s):  
Junyu Xiao ◽  
Xiao-Wei Chen ◽  
Brian A. Davies ◽  
Alan R. Saltiel ◽  
David J. Katzmann ◽  
...  

The ESCRT machinery functions in several important eukaryotic cellular processes. The AAA-ATPase Vps4 catalyzes disassembly of the ESCRT-III complex and may regulate membrane deformation and vesicle scission as well. Ist1 was proposed to be a regulator of Vps4, but its mechanism of action was unclear. The crystal structure of the N-terminal domain of Ist1 (Ist1NTD) reveals an ESCRT-III subunit-like fold, implicating Ist1 as a divergent ESCRT-III family member. Ist1NTD specifically binds to the ESCRT-III subunit Did2, and cocrystallization of Ist1NTD with a Did2 fragment shows that Ist1 interacts with the Did2 C-terminal MIM1 (MIT-interacting motif 1) via a novel MIM-binding structural motif. This arrangement indicates a mechanism for intermolecular ESCRT-III subunit association and may also suggest one form of ESCRT-III subunit autoinhibition via intramolecular interaction.


2011 ◽  
Author(s):  
◽  
Dhiraj Srivastava

PutAs, Proline dehydrogenase and P5C dehydrogenase are involved in the oxidation of proline to glutamate. Mutations in proline dehydrogenase and P5C dehydrogenase cause a disease condition known as hyperprolinemia. In this work I have solved the crystal structure of bifunctional PutA and P5C dehydrogenase. The structure of P5C dehydrogenase sheds light on the structural basis of hyperprolinemia. I have also used kinetic and thermodynamic methods to understand the molecular mechanism of hyperprolinemia.


2012 ◽  
Vol 446 (3) ◽  
pp. 395-404 ◽  
Author(s):  
Kuo-Chang Cheng ◽  
Jhen-Ni Liao ◽  
Ping-Chiang Lyu

The daily cycle of melatonin biosynthesis in mammals is regulated by AANAT (arylalkylamine N-acetyltransferase; EC 2.3.1.87), making it an attractive target for therapeutic control of abnormal melatonin production in mood and sleep disorders. Drosophila melanogaster Dat (dopamine N-acetyltransferase) is an AANAT. Until the present study, no insect Dat structure had been solved, and, consequently, the structural basis for its acetyl-transfer activity was not well understood. We report in the present paper the high-resolution crystal structure for a D. melanogaster Dat–AcCoA (acetyl-CoA) complex obtained using one-edge (selenium) single-wavelength anomalous diffraction. A binding study using isothermal titration calorimetry suggested that the cofactor bound to Dat first before substrate. Examination of the complex structure and a substrate-docked model indicated that Dat contains a novel AANAT catalytic triad. Site-directed mutagenesis, kinetic studies and pH-rate profiles confirmed that Glu47, Ser182 and Ser186 were critical for catalysis. Collectively, the results of the present study suggest that Dat possesses a specialized active site structure dedicated to a catalytic mechanism.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Dominik Layer ◽  
Jürgen Kopp ◽  
Miriam Fontanillo ◽  
Maja Köhn ◽  
Karine Lapouge ◽  
...  

AbstractN-terminal acetylation is one of the most common protein modifications in eukaryotes and is carried out by N-terminal acetyltransferases (NATs). It plays important roles in protein homeostasis, localization, and interactions and is linked to various human diseases. NatB, one of the major co-translationally active NATs, is composed of the catalytic subunit Naa20 and the auxiliary subunit Naa25, and acetylates about 20% of the proteome. Here we show that NatB substrate specificity and catalytic mechanism are conserved among eukaryotes, and that Naa20 alone is able to acetylate NatB substrates in vitro. We show that Naa25 increases the Naa20 substrate affinity, and identify residues important for peptide binding and acetylation activity. We present the first Naa20 crystal structure in complex with the competitive inhibitor CoA-Ac-MDEL. Our findings demonstrate how Naa20 binds its substrates in the absence of Naa25 and support prospective endeavors to derive specific NAT inhibitors for drug development.


Sign in / Sign up

Export Citation Format

Share Document