ubiquitination system
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 22 (21) ◽  
pp. 11912
Author(s):  
Junyan Qu ◽  
Zhenghong Lin

MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes with ~22 nucleotides which are involved in the regulation of post-transcriptional gene expression. Ubiquitination and deubiquitination are common post-translational modifications in eukaryotic cells and important pathways in regulating protein degradation and signal transduction, in which E3 ubiquitin ligases and deubiquitinases (DUBs) play a decisive role. MiRNA and ubiquitination are involved in the regulation of most biological processes, including autophagy. Furthermore, in recent years, the direct interaction between miRNA and E3 ubiquitin ligases or deubiquitinases has attracted much attention, and the cross-talk between miRNA and ubiquitination system has been proved to play key regulatory roles in a variety of diseases. In this review, we summarized the advances in autophagy regulation by crosstalk between miRNA and E3 ubiquitin ligases or deubiquitinases.


2021 ◽  
Vol 22 (19) ◽  
pp. 10589
Author(s):  
Mariola Słowińska ◽  
Łukasz Paukszto ◽  
Laura Pardyak ◽  
Jan P. Jastrzębski ◽  
Ewa Liszewska ◽  
...  

In birds, the zona pellucida (ZP) matrix that surrounds the ovulated oocyte—called the inner perivitelline layer—is involved in sperm–zona interaction and successful fertilization. To identify the important genes and proteins connected with the final step of egg development, next-generation sequencing and two-dimensional electrophoresis, combined with mass spectrometry, were used for the analysis of mature oocytes at the F1 developmental stage. A total of 8161 genes and 228 proteins were annotated. Six subfamilies of genes, with codes ZP, ZP1–4, ZPD, and ZPAX, were identified, with the dominant expression of ZPD. The main expression site for ZP1 was the liver; however, granulosa cells may also participate in local ZP1 secretion. A ubiquitination system was identified in mature oocytes, where ZP1 was found to be the main ubiquitinated protein. Analysis of transcripts classified in estrogen receptor (ESR) signaling indicated the presence of ESR1 and ESR2, as well as a set of estrogen-dependent genes involved in both genomic and nongenomic mechanisms for the regulation of gene expression by estrogen. Oxidative phosphorylation was found to be a possible source of adenosine triphosphate, and the nuclear factor erythroid 2-related factor 2 signaling pathway could be involved in the response against oxidative stress. Oocyte–granulosa cell communication by tight, adherens, and gap junctions seems to be essential for the final step of oocyte maturation.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1383
Author(s):  
Quyen Thu Bui ◽  
Jeong Hee Hong ◽  
Minseok Kwak ◽  
Ji Yeon Lee ◽  
Peter Chang-Whan Lee

The ubiquitin-mediated degradation system is responsible for controlling various tumor-promoting processes, including DNA repair, cell cycle arrest, cell proliferation, apoptosis, angiogenesis, migration and invasion, metastasis, and drug resistance. The conjugation of ubiquitin to a target protein is mediated sequentially by the E1 (activating)‒E2 (conjugating)‒E3 (ligating) enzyme cascade. Thus, E2 enzymes act as the central players in the ubiquitination system, modulating various pathophysiological processes in the tumor microenvironment. In this review, we summarize the types and functions of E2s in various types of cancer and discuss the possibility of E2s as targets of anticancer therapeutic strategies.


2021 ◽  
Vol 9 (3) ◽  
pp. 638
Author(s):  
Vera Vozandychova ◽  
Pavla Stojkova ◽  
Kamil Hercik ◽  
Pavel Rehulka ◽  
Jiri Stulik

Ubiquitination of proteins, like phosphorylation and acetylation, is an important regulatory aspect influencing numerous and various cell processes, such as immune response signaling and autophagy. The study of ubiquitination has become essential to learning about host–pathogen interactions, and a better understanding of the detailed mechanisms through which pathogens affect ubiquitination processes in host cell will contribute to vaccine development and effective treatment of diseases. Pathogenic bacteria (e.g., Salmonella enterica, Legionella pneumophila and Shigella flexneri) encode many effector proteins, such as deubiquitinating enzymes (DUBs), targeting the host ubiquitin machinery and thus disrupting pertinent ubiquitin-dependent anti-bacterial response. We focus here upon the host ubiquitination system as an integral unit, its interconnection with the regulation of inflammation and autophagy, and primarily while examining pathogens manipulating the host ubiquitination system. Many bacterial effector proteins have already been described as being translocated into the host cell, where they directly regulate host defense processes. Due to their importance in pathogenic bacteria progression within the host, they are regarded as virulence factors essential for bacterial evasion. However, in some cases (e.g., Francisella tularensis) the host ubiquitination system is influenced by bacterial infection, although the responsible bacterial effectors are still unknown.


2021 ◽  
Vol 10 (5) ◽  
pp. 1133
Author(s):  
Frédéric Soysouvanh ◽  
Serena Giuliano ◽  
Nadia Habel ◽  
Najla El-Hachem ◽  
Céline Pisibon ◽  
...  

The ubiquitination system plays a critical role in regulation of large array of biological processes and its alteration has been involved in the pathogenesis of cancers, among them cutaneous melanoma, which is responsible for the most deaths from skin cancers. Over the last decades, targeted therapies and immunotherapies became the standard therapeutic strategies for advanced melanomas. However, despite these breakthroughs, the prognosis of metastatic melanoma patients remains unoptimistic, mainly due to intrinsic or acquired resistances. Many avenues of research have been investigated to find new therapeutic targets for improving patient outcomes. Because of the pleiotropic functions of ubiquitination, and because each step of ubiquitination is amenable to pharmacological targeting, much attention has been paid to the role of this process in melanoma development and resistance to therapies. In this review, we summarize the latest data on ubiquitination and discuss the possible impacts on melanoma treatments.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Donghyuk Shin ◽  
Anshu Bhattacharya ◽  
Yi-Lin Cheng ◽  
Marta Campos Alonso ◽  
Ahmad Reza Mehdipour ◽  
...  

Legionella pneumophila causes a severe pneumonia known as Legionnaires’ disease. During the infection, Legionella injects more than 300 effector proteins into host cells. Among them are enzymes involved in altering the host-ubiquitination system. Here, we identified two LegionellaOTU (ovarian tumor)-like deubiquitinases (LOT-DUBs; LotB [Lpg1621/Ceg23] and LotC [Lpg2529]). The crystal structure of the LotC catalytic core (LotC14-310) was determined at 2.4 Å. Unlike the classical OTU-family, the LOT-family shows an extended helical lobe between the Cys-loop and the variable loop, which defines them as a unique class of OTU-DUBs. LotB has an additional ubiquitin-binding site (S1’), which enables the specific cleavage of Lys63-linked polyubiquitin chains. By contrast, LotC only contains the S1 site and cleaves different species of ubiquitin chains. MS analysis of LotB and LotC identified different categories of host-interacting proteins and substrates. Together, our results provide new structural insights into bacterial OTU-DUBs and indicate distinct roles in host–pathogen interactions.


2020 ◽  
Vol 117 (44) ◽  
pp. 27694-27702
Author(s):  
Wenbo Pan ◽  
Baoying Lin ◽  
Xiaoyuan Yang ◽  
Lijing Liu ◽  
Ran Xia ◽  
...  

Abscisic acid (ABA) is the key phytohormone in plant drought tolerance and stress adaptation. The clade A protein phosphatase 2Cs (PP2Cs) like ABI1 (ABA-INSENSITIVE 1) work as coreceptors of ABA and regulate multiple ABA responses. Ubiquitination of ABI1 has been proven to play important regulatory roles in ABA signaling. However, the specific ubiquitin conjugating enzyme (E2) involved is unknown. Here, we report that UBC27 is an active E2 that positively regulates ABA signaling and drought tolerance. UBC27 forms the E2-E3 pair with the drought regulator RING E3 ligase AIRP3. Both UBC27 and AIRP3 interact with ABI1 and affect the ubiquitination and degradation of ABI1. ABA activates the expression ofUBC27, inhibits the proteasome degradation of UBC27, and enhances the interaction between UBC27 and ABI1 to increase its activity. These findings uncover a regulatory mechanism in ABA signaling and drought response and provide a further understanding of the plant ubiquitination system and ABA signaling pathway.


2020 ◽  
Author(s):  
Yachun Lin ◽  
Qinli Hu ◽  
Jia Zhou ◽  
Weixiao Yin ◽  
Deqiang Yao ◽  
...  

AbstractOomycete pathogens such as Phytophthora secrete a repertoire of effectors to host cells to manipulate host immunity and benefit infection. In this study, we found that an RxLR effector, Avr1d, promoted Phytophthora sojae infection in soybean hairy-roots. Using a yeast two-hybrid screen, we identified the soybean E3 ubiquitin ligase GmPUB13 as a host target for Avr1d. By co-immunoprecipitation, gel infiltration and ITC assays, we confirmed that Avr1d interacts with GmPUB13 both in vivo and in vitro. Furthermore, we found that Avr1d inhibits the E3 ligase activity of GmPUB13. The crystal structure of Avr1d in complex with GmPUB13 was solved and revealed that Avr1d occupies the binding site for E2 ubiquitin conjugating enzyme on GmPUB13. In line with this, Avr1d competed with E2 ubiquitin conjugating enzymes for GmPUB13 binding in vitro, thereby decreasing the E3 ligase activity of GmPUB13. Meanwhile, we found that inactivation of the ubiquitin ligase activity of GmPUB13 stabilized GmPUB13 by blocking GmPUB13 degradation. Silencing of GmPUB13 in soybean hairy-roots decreased P. sojae infection, suggesting that GmPUB13 acts as a susceptibility factor, negatively regulating soybean resistance against P. sojae. Altogether, this study highlights a novel virulence mechanism of Phytophthora effectors, by which Avr1d competes with E2 for GmPUB13 binding to repress the GmPUB13 E3 ligase activity and thereby stabilizing the susceptibility factor GmPUB13 to facilitate Phytophthora infection. This is the first study to unravel the structural basis for modulation of host targets by Phytophthora effectors and will be instrumental for boosting plant resistance breeding.Significance StatementUbiquitination acts as a crucial regulator in plant immunity. Accordingly, microbial pathogens secrete effectors to hijak host ubiquitination system. However, the molecular mechanisms by which microbial effectors modulate host ubiquitination system are not yet clear. Here, we found that the Phytophthora sojae effector Avr1d physically binds to the U-box type E3 ligase GmPUB13, a susceptibility factor in soybean. The crystal structure of Avr1d in complex with GmPUB13 revealed that Avr1d occupies the binding site in GmPUB13 for the E2 ubiquitin conjugating enzyme and competes with E2 for physical binding to GmPUB13. Avr1d stabilized GmPUB13 by suppressing the self-ubiquitination activity of GmPUB13 and thereby promoting Phytophthora infection. This study provides structural basis for modulation of host targets by Phytophthora effectors.


2020 ◽  
Vol 3 (9) ◽  
pp. e202000838
Author(s):  
Thomas Hermanns ◽  
Ilka Woiwode ◽  
Ricardo FM Guerreiro ◽  
Robert Vogt ◽  
Michael Lammers ◽  
...  

Deubiquitinating enzymes (DUBs) are important regulators of the posttranslational protein ubiquitination system. Mammalian genomes encode about 100 different DUBs, which can be grouped into seven different classes. Members of other DUB classes are found in pathogenic bacteria, which use them to target the host defense. By combining bioinformatical and experimental approaches, we address the question if the known DUB families have a common evolutionary ancestry and share conserved features that set them apart from other proteases. By systematically comparing family-specific hidden Markov models, we uncovered distant relationships between established DUBs and other cysteine protease families. Most DUB families share a conserved aromatic residue linked to the active site, which restricts the cleavage of substrates with side chains at the S2 position, corresponding to Gly-75 in ubiquitin. By applying these criteria to Legionella pneumophila ORFs, we identified lpg1621 and lpg1148 as deubiquitinases, characterized their cleavage specificities, and confirmed the importance of the aromatic gatekeeper motif for substrate selection.


2020 ◽  
Author(s):  
Thomas Hermanns ◽  
Ilka Woiwode ◽  
Ricardo F. M. Guerreiro ◽  
Robert Vogt ◽  
Michael Lammers ◽  
...  

AbstractDeubiquitinating enzymes (DUBs) are important regulators of the posttranslational protein ubiquitination system. Mammalian genomes encode about hundred different DUBs, which can be grouped into seven different classes. Members of other DUB classes are found in pathogenic bacteria, which use them to target the host defense. By combining bioinformatical and experimental approaches, we address the question if the known DUB families have a common evolutionary ancestry and share conserved features that set them apart from other proteases. By systematically comparing family-specific Hidden-Markov-Models, we uncovered distant relationships between established DUBs and other cysteine protease families. Most DUB families share a conserved aromatic residue linked to the active site, which restricts the cleavage of substrates with sidechains at the S2 position, corresponding to Gly-75 in ubiquitin. By applying these criteria to Legionella pneumophila ORFs, we identified lpg1621 and lpg1148 as deubiquitinases, characterized their cleavage specificities, and confirmed the importance of the aromatic gatekeeper motif for substrate selection.


Sign in / Sign up

Export Citation Format

Share Document