membrane deformation
Recently Published Documents


TOTAL DOCUMENTS

241
(FIVE YEARS 60)

H-INDEX

33
(FIVE YEARS 7)

2021 ◽  
Vol 221 (2) ◽  
Author(s):  
Rachel M. Brunetti ◽  
Gabriele Kockelkoren ◽  
Preethi Raghavan ◽  
George R.R. Bell ◽  
Derek Britain ◽  
...  

To control their movement, cells need to coordinate actin assembly with the geometric features of their substrate. Here, we uncover a role for the actin regulator WASP in the 3D migration of neutrophils. We show that WASP responds to substrate topology by enriching to sites of inward, substrate-induced membrane deformation. Superresolution imaging reveals that WASP preferentially enriches to the necks of these substrate-induced invaginations, a distribution that could support substrate pinching. WASP facilitates recruitment of the Arp2/3 complex to these sites, stimulating local actin assembly that couples substrate features with the cytoskeleton. Surprisingly, WASP only enriches to membrane deformations in the front half of the cell, within a permissive zone set by WASP’s front-biased regulator Cdc42. While WASP KO cells exhibit relatively normal migration on flat substrates, they are defective at topology-directed migration. Our data suggest that WASP integrates substrate topology with cell polarity by selectively polymerizing actin around substrate-induced membrane deformations in the front half of the cell.


Author(s):  
Debabrata Auddya ◽  
Xiaoxuan Zhang ◽  
Rahul Gulati ◽  
Ritvik Vasan ◽  
Krishna Garikipati ◽  
...  

Biomembranes play a central role in various phenomena like locomotion of cells, cell-cell interactions, packaging and transport of nutrients, transmission of nerve impulses, and in maintaining organelle morphology and functionality. During these processes, the membranes undergo significant morphological changes through deformation, scission, and fusion. Modelling the underlying mechanics of such morphological changes has traditionally relied on reduced order axisymmetric representations of membrane geometry and deformation. Axisymmetric representations, while robust and extensively deployed, suffer from their inability to model-symmetry breaking deformations and structural bifurcations. To address this limitation, a three-dimensional computational mechanics framework for high fidelity modelling of biomembrane deformation is presented. The proposed framework brings together Kirchhoff–Love thin-shell kinematics, Helfrich-energy-based mechanics, and state-of-the-art numerical techniques for modelling deformation of surface geometries. Lipid bilayers are represented as spline-based surface discretizations immersed in a three-dimensional space; this enables modelling of a wide spectrum of membrane geometries, boundary conditions, and deformations that are physically admissible in a three-dimensional space. The mathematical basis of the framework and its numerical machinery are presented, and their utility is demonstrated by modelling three classical, yet non-trivial, membrane deformation problems: formation of tubular shapes and their lateral constriction, Piezo1-induced membrane footprint generation and gating response, and the budding of membranes by protein coats during endocytosis. For each problem, the full three-dimensional membrane deformation is captured, potential symmetry-breaking deformation paths identified, and various case studies of boundary and load conditions are presented. Using the endocytic vesicle budding as a case study, we also present a ‘phase diagram’ for its symmetric and broken-symmetry states.


2021 ◽  
Author(s):  
Mohammed Saleem ◽  
Anuj Tiwari ◽  
Sweta Pradhan ◽  
Achinta Sannigrahi ◽  
Suman Jha ◽  
...  

Amyloid-beta (Ab) aggregation mediated neuronal membrane deformation, although poorly understood, is implicated in Alzheimer's Disease (AD). Particularly, whether Ab aggregation can induce neuronal demyelination remains unknown. Here we show that Aβ-40 binds and induces extensive tubulation in the myelin membrane in vitro. The binding of Aβ-40 depends predominantly on the lipid packing defect densities and electrostatic interactions and results in rigidification of the myelin membrane in the early time scales. Furthermore, elongation of Aβ-40 into higher oligomeric and fibrillar species leads to eventual fluidization of the myelin membrane followed by extensive membrane tubulation observed in the late phase. Taken together, our results capture mechanistic insights into snapshots of temporal dynamics of Aβ-40- myelin membrane interaction and demonstrate how short timescale, local phenomena of binding, and fibril mediated load generation manifests into long timescale, global phenomena of myelin tubulation and demonstrates the ability of Aβ-40 to demyelinate.


Author(s):  
Petia Adarska ◽  
Luis Wong-Dilworth ◽  
Francesca Bottanelli

Molecular switches of the ADP-ribosylation factor (ARF) GTPase family coordinate intracellular trafficking at all sorting stations along the secretory pathway, from the ER-Golgi-intermediate compartment (ERGIC) to the plasma membrane (PM). Their GDP-GTP switch is essential to trigger numerous processes, including membrane deformation, cargo sorting and recruitment of downstream coat proteins and effectors, such as lipid modifying enzymes. While ARFs (in particular ARF1) had mainly been studied in the context of coat protein recruitment at the Golgi, COPI/clathrin-independent roles have emerged in the last decade. Here we review the roles of human ARF1-5 GTPases in cellular trafficking with a particular emphasis on their roles in post-Golgi secretory trafficking and in sorting in the endo-lysosomal system.


2021 ◽  
Author(s):  
Michael K Thorsen ◽  
Alex Lai ◽  
Michelle W. Lee ◽  
David P. Hoogerheide ◽  
Gerard C.L. Wong ◽  
...  

During replication of herpesviruses, capsids escape from the nucleus into the cytoplasm by budding at the inner nuclear membrane. This unusual process is mediated by the viral nuclear egress complex (NEC) that deforms the membrane around the capsid by oligomerizing into a hexagonal, membrane-bound scaffold. Here, we found that highly basic membrane-proximal regions (MPRs) of the NEC alter lipid order by inserting into the lipid headgroups and also promote negative Gaussian curvature. We also find that the electrostatic interactions between the MPRs and the membranes are essential for membrane deformation. One of the MPRs is phosphorylated by a viral kinase during infection, and the corresponding phosphomimicking mutations block capsid nuclear egress. We show that the same phosphomimicking mutations disrupt the NEC/membrane interactions and inhibit NEC-mediated budding in vitro, providing a biophysical explanation for the in-vivo phenomenon. Our data suggest that the NEC generates negative membrane curvature by both lipid ordering and protein scaffolding and that phosphorylation acts as an "off" switch that inhibits the membrane-budding activity of the NEC to prevent capsid-less budding.


2021 ◽  
Author(s):  
Masashi Kuriyama ◽  
Hisaaki Hirose ◽  
Toshihiro Masuda ◽  
Masachika Shudou ◽  
Jan Vincent V Arafiles ◽  
...  

Macropinocytosis is a type of endocytosis accompanied by actin rearrangement-driven membrane deformation, such as lamellipodia formation and membrane ruffling, followed by macropinosome formation. A certain number of mammalian mechanosensors are sensitive to membrane deformation and tension. However, it remains unclear whether macropinocytosis is regulated by mechanosensors. Focusing on the mechanosensitive ion channel Piezo1, we found that Yoda1, a Piezo1 agonist, potently inhibits macropinocytosis induced by epidermal growth factor (EGF). Although studies with Piezo1 knockout cells suggest that Piezo1 itself is not physiologically indispensable for macropinocytosis regulation, Yoda1 inhibited ruffle formation depending on the extracellular Ca2+ influx through Piezo1 and on the activation of the calcium-activated potassium channel KCa3.1. This suggests that Ca2+ ions can regulate EGF-stimulated macropinocytosis. Moreover, Yoda1 impaired cancer cell proliferation, suggesting the impact of macropinocytosis inhibition. We propose the potential for cancer therapy by macropinocytosis inhibition through the regulation of a mechanosensitive channel activity.


Author(s):  
Hammad A. Faizi ◽  
Rumiana Dimova ◽  
Petia M. Vlahovska

Viscosity is a key mechanical property of cell membranes that controls time-dependent processes such as membrane deformation and diffusion of embedded inclusions. Despite its importance, membrane viscosity remains poorly characterized because existing methods rely on complex experimental designs and/or analyses. Here, we describe a facile method to determine the viscosity of bilayer membranes from the transient deformation of giant unilamellar vesicles induced by a uniform electric field. The method is non-invasive, easy to implement, probe-independent, high-throughput, and sensitive enough to discern membrane viscosity of different lipid types, lipid phases, and polymers in a wide range, from 10−8 to 10−4 Pa.s.m. It enables fast and consistent collection of data that will advance understanding of biomembrane dynamics.


Desalination ◽  
2021 ◽  
Vol 500 ◽  
pp. 114835
Author(s):  
Giuseppe Battaglia ◽  
Luigi Gurreri ◽  
Michele Ciofalo ◽  
Andrea Cipollina ◽  
I. David L. Bogle ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document