catabolic enzymes
Recently Published Documents


TOTAL DOCUMENTS

245
(FIVE YEARS 33)

H-INDEX

38
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jie Jin ◽  
Xinhuang Lv ◽  
Ben Wang ◽  
Chenghao Ren ◽  
Jingtao Jiang ◽  
...  

Osteoarthritis (OA), a degenerative disorder, is considered to be one of the most common forms of arthritis. Limonin (Lim) is extracted from lemons and other citrus fruits. Limonin has been reported to have anti-inflammatory effects, while inflammation is a major cause of OA; thus, we propose that limonin may have a therapeutic effect on OA. In this study, the therapeutic effect of limonin on OA was assessed in chondrocytes in vitro in IL-1β induced OA and in the destabilization of the medial meniscus (DMM) mice in vivo. The Nrf2/HO-1/NF-κB signaling pathway was evaluated to illustrate the working mechanism of limonin on OA in chondrocytes. In this study, it was found that limonin can reduce the level of IL-1β induced proinflammatory cytokines such as INOS, COX-2, PGE2, NO, TNF-α, and IL-6. Limonin can also diminish the biosynthesis of IL-1β-stimulated chondrogenic catabolic enzymes such as MMP13 and ADAMTS5 in chondrocytes. The research on the mechanism study demonstrated that limonin exerts its protective effect on OA through the Nrf2/HO-1/NF-κB signaling pathway. Taken together, the present study shows that limonin may activate the Nrf2/HO-1/NF-κB pathway to alleviate OA, making it a candidate therapeutic agent for OA.


2021 ◽  
Vol 266 ◽  
pp. 153535
Author(s):  
Koki Fukura ◽  
Ayumi Tanaka ◽  
Ryouichi Tanaka ◽  
Hisashi Ito
Keyword(s):  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yijiao Zhao ◽  
Zeyuan Chen ◽  
Jiaxuan Chen ◽  
Bingxing Chen ◽  
Weiling Tang ◽  
...  

Abstract Background To understand the mechanism of glucosinolates (GSs) accumulation in the specific organs, combined analysis of physiological change and transcriptome sequencing were applied in the current study. Taking Chinese kale as material, seeds and silique walls were divided into different stages based on the development of the embryo in seeds and then subjected to GS analysis and transcriptome sequencing. Results The main GS in seeds of Chinese kale were glucoiberin and gluconapin and their content changed with the development of the seed. During the transition of the embryo from torpedo- to the early cotyledonary-embryo stage, the accumulation of GS in the seed was accompanied by the salient decline of GS in the corresponding silique wall. Thus, the seed and corresponding silique wall at these two stages were subjected to transcriptomic sequencing analysis. 135 genes related to GS metabolism were identified, of which 24 genes were transcription factors, 81 genes were related to biosynthetic pathway, 25 genes encoded catabolic enzymes, and 5 genes matched with transporters. The expression of GS biosynthetic genes was detected both in seeds and silique walls. The high expression of FMOGS-OX and AOP2, which is related to the production of gluconapin by side modification, was noted in seeds at both stages. Interestingly, the expression of GS biosynthetic genes was higher in the silique wall compared with that in the seed albeit lower content of GS existed in the silique wall than in the seed. Combined with the higher expression of transporter genes GTRs in silique walls than in seeds, it was proposed that the transportation of GS from the silique wall to the seed is an important source for seed GS accumulation. In addition, genes related to GS degradation expressed abundantly in the seed at the early cotyledonary-embryo stage indicating its potential role in balancing seed GS content. Conclusions Two stages including the torpedo-embryo and the early cotyledonary-embryo stage were identified as crucial in GS accumulation during seed development. Moreover, we confirmed the transportation of GS from the silique wall to the seed and proposed possible sidechain modification of GS biosynthesis may exist during seed formation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Feng Zhao ◽  
Zhenye Guo ◽  
Fushan Hou ◽  
Wei Fan ◽  
Binqiang Wu ◽  
...  

Intervertebral disc degeneration (IDD) is related to the deterioration of nucleus pulposus (NP) cells due to hypertrophic differentiation and calcification. The imbalance of pro-inflammatory (M1 type) and anti-inflammatory (M2 type) macrophages contributes to maintaining tissue integrity. Here, we aimed to probe the effect of Magnoflorine (MAG) on NP cell apoptosis mediated by “M1” polarized macrophages. THP-1 cells were treated with lipopolysaccharide (LPS) to induce “M1” polarized macrophages. Under the treatment with increasing concentrations of MAG, the expression of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, IL-18), high mobility group box protein 1 (HMGB1), as well as myeloid differentiation factor 88 (MyD88), nuclear factor kappa B (NF-κB) and NOD-like receptor 3 (NLRP3) inflammasomes in THP-1 cells were determined. What’s more, human NP cells were treated with the conditioned medium (CM) from THP-1 cells. The NP cell viability and apoptosis were evaluated. Western blot (WB) was adopted to monitor the expression of apoptosis-related proteins (Bax, Caspase3, and Caspase9), catabolic enzymes (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5), and extracellular matrix (ECM) compositions (collagen II and aggrecan) in NP cells. As a result, LPS evidently promoted the expression of pro-inflammatory cytokines and HMGB1, the MyD88-NF-κB activation, and the NLRP3 inflammasome profile in THP-1 cells, while MAG obviously inhibited the "M1″ polarization of THP-1 cells. After treatment with “M1” polarized THP-1 cell CM, NP cell viability was decreased, while cell apoptosis, the pro-inflammatory cytokines, apoptosis-related proteins, and catabolic enzymes were distinctly up-regulated, and ECM compositions were reduced. After treatment with MAG, NP cell damages were dramatically eased. Furthermore, MAG dampened the HMGB1 expression and inactivated the MyD88/NF-κB pathway and NLRP3 inflammasome in NP cells. In conclusion, this study confirmed that MAG alleviates “M1” polarized macrophage-mediated NP cell damage by inactivating the HMGB1-MyD88-NF-κB pathway and NLRP3 inflammasome, which provides a new reference for IDD treatment.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Surender Rajasekaran ◽  
Caleb P Bupp ◽  
Mara Leimanis-Laurens ◽  
Ankit Shukla ◽  
Christopher Russell ◽  
...  

Background:Polyamine levels are intricately controlled by biosynthetic, catabolic enzymes and antizymes. The complexity suggests that minute alterations in levels lead to profound abnormalities. We described the therapeutic course for a rare syndrome diagnosed by whole exome sequencing caused by gain-of-function variants in the C-terminus of ornithine decarboxylase (ODC), characterized by neurological deficits and alopecia.Methods:N-acetylputrescine levels with other metabolites were measured using ultra-performance liquid chromatography paired with mass spectrometry and Z-scores established against a reference cohort of 866 children.Results:From previous studies and metabolic profiles, eflornithine was identified as potentially beneficial with therapy initiated on FDA approval. Eflornithine normalized polyamine levels without disrupting other pathways. She demonstrated remarkable improvement in both neurological symptoms and cortical architecture. She gained fine motor skills with the capacity to feed herself and sit with support.Conclusions:This work highlights the strategy of repurposing drugs to treat a rare disease.Funding:No external funding was received for this work.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (7) ◽  
pp. e1009635
Author(s):  
Lidan Zeng ◽  
Xuesong Li ◽  
Christopher B. Preusch ◽  
Gary J. He ◽  
Ningyi Xu ◽  
...  

The intracellular level of fatty aldehydes is tightly regulated by aldehyde dehydrogenases to minimize the formation of toxic lipid and protein adducts. Importantly, the dysregulation of aldehyde dehydrogenases has been implicated in neurologic disorder and cancer in humans. However, cellular responses to unresolved, elevated fatty aldehyde levels are poorly understood. Here, we report that ALH-4 is a C. elegans aldehyde dehydrogenase that specifically associates with the endoplasmic reticulum, mitochondria and peroxisomes. Based on lipidomic and imaging analysis, we show that the loss of ALH-4 increases fatty aldehyde levels and reduces fat storage. ALH-4 deficiency in the intestine, cell-nonautonomously induces NHR-49/NHR-79-dependent hypodermal peroxisome proliferation. This is accompanied by the upregulation of catalases and fatty acid catabolic enzymes, as indicated by RNA sequencing. Such a response is required to counteract ALH-4 deficiency since alh-4; nhr-49 double mutant animals are sterile. Our work reveals unexpected inter-tissue communication of fatty aldehyde levels and suggests pharmacological modulation of peroxisome proliferation as a therapeutic strategy to tackle pathology related to excess fatty aldehydes.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 624
Author(s):  
Li Chang ◽  
Zhiqing Li ◽  
Hao Guo ◽  
Wenchang Zhang ◽  
Weiqun Lan ◽  
...  

Background: Putrescine, spermidine, and spermine are polyamines that are ubiquitously distributed in prokaryotic and eukaryotic cells, which play important roles in cell proliferation and differentiation. Methods: We investigated the expression profiles of polyamine pathway genes by qRT-PCR in different tissues of the lepidopteran silkworm. The polyamine levels in cultured silkworm cells were measured by HPLC. Spermidine and polyamine biosynthetic inhibitors were used for treating the cultured silkworm cells in order to clarify their effects on cell cycle progression. Results: We identified the anabolic and catabolic enzymes that are involved in the polyamine biosynthetic pathway in silkworm. Transcriptional expression showed at least seven genes that were expressed in different silkworm tissues. Treatments of the cultured silkworm cells with spermidine or inhibitor mixtures of DFMO and MGBG induced or inhibited the expression of cell cycle-related genes, respectively, and thus led to changed progression of the cell cycle. Conclusions: The present study is the first to identify the polyamine pathway genes and to demonstrate the roles of polyamines on cell cycle progression via regulation of the expression of cell cycle genes in silkworm.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 801
Author(s):  
Maria Detopoulou ◽  
Agathi Ntzouvani ◽  
Filio Petsini ◽  
Labrini Gavriil ◽  
Εlizabeth Fragopoulou ◽  
...  

Platelet-activating factor (PAF), a proinflammatory lipid mediator, plays a crucial role in the formation of the atherosclerotic plaque. Therefore, the inhibition of endothelium inflammation by nutraceuticals, such as PAF inhibitors, is a promising alternative for preventing cardiovascular diseases. The aim of the present study was to evaluate the impact of a new functional yogurt enriched with PAF inhibitors of natural origin from olive oil by-products on PAF metabolism. Ninety-two apparently healthy, but mainly overweight volunteers (35–65 years) were randomly allocated into three groups by block-randomization. The activities of PAF’s biosynthetic and catabolic enzymes were measured, specifically two isoforms of acetyl-CoA:lyso-PAF acetyltransferase (LPCATs), cytidine 5′-diphospho-choline:1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase (PAF-CPT) and two isoforms of platelet activating factor acetylhydrolase in leucocytes (PAF-AH) and plasma (lipoprotein associated phospholipase-A2, LpPLA2). The intake of the enriched yogurt resulted in reduced PAF-CPT and LpPLA2 activities. No difference was observed in the activities of the two isoforms of lyso PAF-AT. In conclusion, intake of yogurt enriched in PAF inhibitors could favorably modulate PAF biosynthetic and catabolic pathways.


Author(s):  
S.Z.Z. Cobongela

The global increase in production of plastic and accumulation in the environment is becoming a major concern especially to the aquatic life. This is due to the natural resistance of plastic to both physical and chemical degradation. Lack of biodegradability of plastic polymers is linked to, amongst other factors, the mobility of the polymers in the crystalline part of the polyesters as they are responsible for enzyme interaction. There are significantly few catabolic enzymes that are active in breaking down polyesters which are the constituents of plastic. The synthetic polymers widely used in petroleum-based plastics include polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), polyurethane (PUR), polystyrene (PS), polyamide (PA) and polyethylene terephthalate (PET) being the ones used mostly. Polymers with heteroatomic backbone such as PET and PUR are easier to degrade than the straight carbon-carbon backbone polymers such as PE, PP, PS and PVC.


Sign in / Sign up

Export Citation Format

Share Document