scholarly journals Learning with naturalistic odor representations in a dynamic model of the Drosophila olfactory system

2019 ◽  
Author(s):  
Ann Kennedy

AbstractMany odor receptors in the insect olfactory system are broadly tuned, yet insects can form associative memories that are odor-specific. The key site of associative olfactory learning in insects, the mushroom body, contains a population of Kenyon Cells (KCs) that form sparse representations of odor identity and enable associative learning of odors by mushroom body output neurons (MBONs). This architecture is well suited to odor-specific associative learning if KC responses to odors are uncorrelated with each other, however it is unclear whether this hold for actual KC representations of natural odors. We introduce a dynamic model of the Drosophila olfactory system that predicts the responses of KCs to a panel of 110 natural and monomolecular odors, and examine the generalization properties of associative learning in model MBONs. While model KC representations of odors are often quite correlated, we identify mechanisms by which odor-specific associative learning is still possible.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chang Zhao ◽  
Yves F. Widmer ◽  
Sören Diegelmann ◽  
Mihai A. Petrovici ◽  
Simon G. Sprecher ◽  
...  

AbstractOlfactory learning and conditioning in the fruit fly is typically modelled by correlation-based associative synaptic plasticity. It was shown that the conditioning of an odor-evoked response by a shock depends on the connections from Kenyon cells (KC) to mushroom body output neurons (MBONs). Although on the behavioral level conditioning is recognized to be predictive, it remains unclear how MBONs form predictions of aversive or appetitive values (valences) of odors on the circuit level. We present behavioral experiments that are not well explained by associative plasticity between conditioned and unconditioned stimuli, and we suggest two alternative models for how predictions can be formed. In error-driven predictive plasticity, dopaminergic neurons (DANs) represent the error between the predictive odor value and the shock strength. In target-driven predictive plasticity, the DANs represent the target for the predictive MBON activity. Predictive plasticity in KC-to-MBON synapses can also explain trace-conditioning, the valence-dependent sign switch in plasticity, and the observed novelty-familiarity representation. The model offers a framework to dissect MBON circuits and interpret DAN activity during olfactory learning.


2019 ◽  
Author(s):  
Chang Zhao ◽  
Yves F Widmer ◽  
Soeren Diegelmann ◽  
Mihai Petrovici ◽  
Simon G Sprecher ◽  
...  

AbstractOlfactory learning and conditioning in the fruit fly is typically modelled by correlation-based associative synaptic plasticity. It was shown that the conditioning of an odor-evoked response by a shock depends on the connections from Kenyon cells (KC) to mushroom body output neurons (MBONs). Although on the behavioral level conditioning is recognized to be predictive, it remains unclear how MBONs form predictions of aversive or appetitive values (valences) of odors on the circuit level. We present behavioral experiments that are not well explained by associative plasticity between conditioned and unconditioned stimuli, and we suggest two alternative models for how predictions can be formed. In error-driven predictive plasticity, dopaminergic neurons (DANs) represent the error between the predictive odor value and the shock strength. In target-driven predictive plasticity, the DANs represent the target for the predictive MBON activity. Predictive plasticity in KC-to-MBON synapses can also explain trace-conditioning, the valence-dependent sign switch in plasticity, and the observed novelty-familiarity representation. The model offer a framework to dissect MBON circuits and interpret DAN activity during olfactory learning.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Noa Bielopolski ◽  
Hoger Amin ◽  
Anthi A Apostolopoulou ◽  
Eyal Rozenfeld ◽  
Hadas Lerner ◽  
...  

Olfactory associative learning in Drosophila is mediated by synaptic plasticity between the Kenyon cells of the mushroom body and their output neurons. Both Kenyon cells and their inputs from projection neurons are cholinergic, yet little is known about the physiological function of muscarinic acetylcholine receptors in learning in adult flies. Here, we show that aversive olfactory learning in adult flies requires type A muscarinic acetylcholine receptors (mAChR-A), particularly in the gamma subtype of Kenyon cells. mAChR-A inhibits odor responses and is localized in Kenyon cell dendrites. Moreover, mAChR-A knockdown impairs the learning-associated depression of odor responses in a mushroom body output neuron. Our results suggest that mAChR-A function in Kenyon cell dendrites is required for synaptic plasticity between Kenyon cells and their output neurons.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Yoshinori Aso ◽  
Daisuke Hattori ◽  
Yang Yu ◽  
Rebecca M Johnston ◽  
Nirmala A Iyer ◽  
...  

We identified the neurons comprising the Drosophila mushroom body (MB), an associative center in invertebrate brains, and provide a comprehensive map describing their potential connections. Each of the 21 MB output neuron (MBON) types elaborates segregated dendritic arbors along the parallel axons of ∼2000 Kenyon cells, forming 15 compartments that collectively tile the MB lobes. MBON axons project to five discrete neuropils outside of the MB and three MBON types form a feedforward network in the lobes. Each of the 20 dopaminergic neuron (DAN) types projects axons to one, or at most two, of the MBON compartments. Convergence of DAN axons on compartmentalized Kenyon cell–MBON synapses creates a highly ordered unit that can support learning to impose valence on sensory representations. The elucidation of the complement of neurons of the MB provides a comprehensive anatomical substrate from which one can infer a functional logic of associative olfactory learning and memory.


2018 ◽  
Author(s):  
Noa Bielopolski ◽  
Hoger Amin ◽  
Anthi A. Apostolopoulou ◽  
Eyal Rozenfeld ◽  
Hadas Lerner ◽  
...  

AbstractOlfactory associative learning inDrosophilais mediated by synaptic plasticity between the Kenyon cells of the mushroom body and their output neurons. Both Kenyon cells and their inputs are cholinergic, yet little is known about the physiological function of muscarinic acetylcholine receptors in learning in adult flies. Here we show that aversive olfactory learning in adult flies requires type A muscarinic acetylcholine receptors (mAChR-A) specifically in the gamma subtype of Kenyon cells. Surprisingly, mAChR-A inhibits odor responses in both Kenyon cell dendrites and axons. Moreover, mAChR-A knockdown impairs the learning-associated depression of odor responses in a mushroom body output neuron. Our results suggest that mAChR-A is required at Kenyon cell presynaptic terminals to depress the synapses between Kenyon cells and their output neurons, and may suggest a role for the recently discovered axo-axonal synapses between Kenyon cells.


Author(s):  
Jürgen Rybak ◽  
Randolf Menzel

The mushroom body (MB) in the insect brain is composed of a large number of densely packed neurons called Kenyon cells (KCs) (Drosophila, 2200; honeybee, 170,000). In most insect species, the MB consists of two caplike dorsal structures, the calyces, which contain the dendrites of KCs, and two to four lobes formed by collaterals of branching KC axons. Although the MB receives input and provides output throughout its whole structure, the neuropil part of the calyx receives predominantly multimodal input from sensory projection neurons (PNs) of second or a higher order, and the lobes send output neurons to many other parts of the brain, including recurrent neurons to the MB calyx. Widely branching, supposedly modulatory neurons (serotonergic, octopaminergic) innervate the MB at all levels (calyx, peduncle, and lobes), including the somata of KCs in the calyx (dopamine).


2019 ◽  
Vol 116 (11) ◽  
pp. 5118-5125 ◽  
Author(s):  
Mingmin Zhou ◽  
Nannan Chen ◽  
Jingsong Tian ◽  
Jianzhi Zeng ◽  
Yunpeng Zhang ◽  
...  

The GABAergic system serves as a vital negative modulator in cognitive functions, such as learning and memory, while the mechanisms governing this inhibitory system remain to be elucidated. In Drosophila, the GABAergic anterior paired lateral (APL) neurons mediate a negative feedback essential for odor discrimination; however, their activity is suppressed by learning via unknown mechanisms. In aversive olfactory learning, a group of dopaminergic (DA) neurons is activated on electric shock (ES) and modulates the Kenyon cells (KCs) in the mushroom body, the center of olfactory learning. Here we find that the same group of DA neurons also form functional synaptic connections with the APL neurons, thereby emitting a suppressive signal to the latter through Drosophila dopamine 2-like receptor (DD2R). Knockdown of either DD2R or its downstream molecules in the APL neurons results in impaired olfactory learning at the behavioral level. Results obtained from in vivo functional imaging experiments indicate that this DD2R-dependent DA-to-APL suppression occurs during odor-ES conditioning and discharges the GABAergic inhibition on the KCs specific to the conditioned odor. Moreover, the decrease in odor response of the APL neurons persists to the postconditioning phase, and this change is also absent in DD2R knockdown flies. Taken together, our findings show that DA-to-GABA suppression is essential for restraining the GABAergic inhibition during conditioning, as well as for inducing synaptic modification in this learning circuit. Such circuit mechanisms may play conserved roles in associative learning across species.


2019 ◽  
Author(s):  
Collins Assisi ◽  
Mark Stopfer ◽  
Maxim Bazhenov

AbstractThe neural representation of a stimulus is repeatedly transformed as it moves from the sensory periphery to deeper layers of the nervous system. Sparsening transformations are thought to increase the separation between similar representations, encode stimuli with great specificity, maximize storage capacity as associative memories, and provide an energy efficient instantiation of information in neural circuits. In the insect olfactory system, odors are initially represented in the periphery as a combinatorial code with simple temporal dynamics. Subsequently, in the antennal lobe this representation is transformed into a dense spatiotemporal activity pattern. Next, in the mushroom body Kenyon cells (KCs), the representation is dramatically sparsened. Then in mushroom body output neurons (MBONs), the representation takes on a new dense spatiotemporal format. Here, we develop a computational model to simulate this chain of olfactory processing from the receptor neurons to MBONs. We demonstrate that representations of similar odorants are maximally separated, measured by the distance between the corresponding MBON activity vectors, when KC responses are sparse and that the sparseness is maintained across variations in odor concentration by adjusting the feedback inhibition KCs receive. Different odor concentrations require different strength and timing of feedback inhibition for optimal processing. Further, in vivo, the KC–MBON synapse is highly plastic, and changes in synaptic strength after learning can change the balance of excitation and inhibition and may lead to a change in the distance between MBON activity vectors of two odorants for the same level of KC population sparseness. Thus, what is an optimal degree of sparseness before odor learning, could be rendered sub–optimal post learning. Here, we show, however, that synaptic weight changes caused by spike timing dependent plasticity increase the distance between the odor representations from the perspective of MBONs and do not lead to a concomitant change in the optimal sparseness.Author SummaryKenyon cells (KCs) of the mushroom body represent odors as a sparse code. When viewed from the perspective of follower neurons, mushroom body output neurons (MBONs), an optimal level of KC sparseness maximally separates the representations of odors. However, the KC–MBON synapse is highly plastic and may be potentiated or depressed by odor–driven experience that could, in turn, perturb the optimality formed by pre–synaptic circuits. Contrary to this expectation, we show that synaptic plasticity based on spike timing of pre- and postsynaptic neurons improves the ability of the system to distinguish between the representations of similar odors while preserving the optimality determined by pre–synaptic circuits.


2021 ◽  
Author(s):  
Bohan Zhao ◽  
Jiameng Sun ◽  
Qian Li ◽  
Yi Zhong

AbstractMultiple spaced trials of aversive differential conditioning can produce two independent longterm memories (LTMs) of opposite valence. One is an aversive memory for avoiding the conditioned stimulus (CS+), and the other is a safety memory for approaching the non-conditioned stimulus (CS−). Here, we show that a single trial of aversive differential conditioning yields one merged LTM (mLTM) for avoiding both CS+ and CS−. Such mLTM can be detected after sequential exposures to the shock-paired CS+ and unpaired CS−, and be retrieved by either CS+ or CS−. The formation of mLTM relies on triggering aversive-reinforcing dopaminergic neurons and subsequent new protein synthesis. Expressing mLTM involves αβ Kenyon cells and corresponding approach-directing mushroom body output neurons (MBONs), in which similar-amplitude long-term depression of responses to CS+ and CS− seems to signal the mLTM. Our results suggest that animals can develop distinct strategies for occasional and repeated threatening experiences.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Chang-Hui Tsao ◽  
Chien-Chun Chen ◽  
Chen-Han Lin ◽  
Hao-Yu Yang ◽  
Suewei Lin

The fruit fly can evaluate its energy state and decide whether to pursue food-related cues. Here, we reveal that the mushroom body (MB) integrates hunger and satiety signals to control food-seeking behavior. We have discovered five pathways in the MB essential for hungry flies to locate and approach food. Blocking the MB-intrinsic Kenyon cells (KCs) and the MB output neurons (MBONs) in these pathways impairs food-seeking behavior. Starvation bi-directionally modulates MBON responses to a food odor, suggesting that hunger and satiety controls occur at the KC-to-MBON synapses. These controls are mediated by six types of dopaminergic neurons (DANs). By manipulating these DANs, we could inhibit food-seeking behavior in hungry flies or promote food seeking in fed flies. Finally, we show that the DANs potentially receive multiple inputs of hunger and satiety signals. This work demonstrates an information-rich central circuit in the fly brain that controls hunger-driven food-seeking behavior.


Sign in / Sign up

Export Citation Format

Share Document