scholarly journals Flexible Modulation of Neural Variance Facilitates Neuroprosthetic Skill Learning

2019 ◽  
Author(s):  
Albert K. You ◽  
Bing Liu ◽  
Abhimanyu Singhal ◽  
Suraj Gowda ◽  
Helene Moorman ◽  
...  

SUMMARYOne hallmark of natural motor control is the brain’s ability to adapt to perturbations ranging from temporary visual-motor rotations to paresis caused by stroke. These adaptations require modifications of learned neural patterns that can span the time-course of minutes to months. Previous work with brain-machine interfaces (BMI) has shown that over learning, neurons consolidate firing activity onto low-dimensional neural subspaces, and additional studies have shown that neurons require longer timescales to adapt to task perturbations that require neural activity outside of these subspaces. However, it is unclear how the motor cortex adapts alongside task changes that do not require modifications of the existing neural subspace over learning. To answer this question, five nonhuman primates were used in three BMI experiments, which allowed us to track how specific populations of neurons changed firing patterns as task performance improved. In each experiment, neural activity was transformed into cursor kinematics using decoding algorithms that were periodically readapted based on natural arm movements or visual feedback. We found that decoder changes caused neurons to increase exploratory-like patterns on within-day timescales without hindering previously consolidated patterns regardless of task performance. The flexible modulation of these exploratory patterns in contrast to relatively stable consolidated activity suggests a simultaneous exploration-exploitation strategy that adapts existing neural patterns during learning.

2010 ◽  
Vol 103 (5) ◽  
pp. 2664-2674 ◽  
Author(s):  
Joonkoo Park ◽  
Jun Zhang

A study in 2002 using a random-dot motion-discrimination paradigm showed that an information accumulation model with a threshold-crossing mechanism can account for activity of the lateral intraparietal area (LIP) neurons. Here, mathematical techniques were applied to the same dataset to quantitatively address the sensory versus motor representation of the neuronal activity during the time course of a trial. A technique based on Signal Detection Theory was applied to provide indices to quantify how neuronal firing activity is responsible for encoding the stimulus or selecting the response at the behavioral level. Additionally, a statistical model based on Poisson regression was used to provide an orthogonal decomposition of the neural activity into stimulus, response, and stimulus-response mapping components. The temporal dynamics of the sensorimotor locus of the LIP activity indicated that there is no stimulus-response mapping-specific neuronal firing activity throughout a trial; the neural activity toward the saccadic onset reflects the development of the motor representation, and the neural activity in the beginning of a trial contains little, if any, information about the sensory representation. Sensorimotor analysis on individual neurons also showed that the neuronal activation, as a population, represent pending saccadic direction and carry little information about the direction of the motion stimulus.


Ergonomics ◽  
1989 ◽  
Vol 32 (4) ◽  
pp. 387-399 ◽  
Author(s):  
CHARLES J. WORRINGHAM ◽  
DENNIS B. BERINGER

2021 ◽  
Vol 126 (3) ◽  
pp. 946-956
Author(s):  
Roland Staud ◽  
Jeff Boissoneault ◽  
Song Lai ◽  
Marlin S. Mejia ◽  
Riddhi Ramanlal ◽  
...  

“Windup” and its behavioral correlate “temporal-summation-of-second pain” (TSSP) represent spinal cord mechanisms of pain augmentation associated with central sensitization and chronic pain. Fibromyalgia (FM) is a chronic pain disorder, where abnormal TSSP has been demonstrated. We used fMRI to study spinal cord and brainstem activation during TSSP. We characterized the time course of spinal cord and brainstem BOLD activity during TSSP which showed abnormal brainstem activity in patients with FM, possibly due to deficient pain modulation.


2020 ◽  
pp. 174702182098030
Author(s):  
Otto Waris ◽  
Daniel Fellman ◽  
Jussi Jylkkä ◽  
Matti Laine

Cognitive task performance is a dynamic process that evolves over time, starting from the first encounters with a task. An important aspect of these task dynamics is the employment of strategies to support successful performance and task acquisition. Focusing on episodic memory performance, we: (1) tested two hypotheses on the effects of novelty and task difficulty on strategy use; (2) replicated our previous results regarding strategy use in a novel memory task; and (3) evaluated whether repeated open-ended strategy queries affect task performance and/or strategy use. The present pre-registered online study comprised 161 adult participants who were recruited through the Prolific crowdsourcing platform. We employed two separate 5-block list learning tasks, one with 10 pseudowords and the other with 18 common nouns, and collected recall performance and strategy reports for each block. Using Bayesian linear mixed effects models, the present findings (1) provide some support for the hypothesis that task-initial strategy development is not triggered only by task novelty, but can appear also in a familiar, moderately demanding task; (2) replicate earlier findings from an adaptive working memory task indicating strategy use from the beginning of a task, associations between strategy use and objective task performance, and only modest agreement between open-ended vs. list-based strategy reports; and (3) indicate that repeated open-ended strategy reports do not affect objective recall. We conclude that strategy use is an important aspect of memory performance right from the start of a task, and it undergoes development at the initial stages depending on task characteristics. In a larger perspective, the present results concur with the views of skill learning and adaptivity in cognitive task performance.


SLEEP ◽  
2017 ◽  
Vol 40 (suppl_1) ◽  
pp. A79-A79
Author(s):  
JG Maier ◽  
H Piosczyk ◽  
J Holz ◽  
N Landmann ◽  
C Deschler ◽  
...  

2007 ◽  
Vol 18 (2) ◽  
pp. 379-385 ◽  
Author(s):  
G. Beeli ◽  
M. Esslen ◽  
L. Jancke
Keyword(s):  

2013 ◽  
Vol 25 (1) ◽  
pp. 87-108 ◽  
Author(s):  
Alisha C. Holland ◽  
Elizabeth A. Kensinger

We used fMRI to investigate the neural processes engaged as individuals down- and up-regulated the emotions associated with negative autobiographical memories (AMs) using cognitive reappraisal strategies. Our analyses examined neural activity during three separate phases, as participants (a) viewed a reappraisal instruction (i.e., Decrease, Increase, Maintain), (b) searched for an AM referenced by a self-generated cue, and (c) elaborated upon the details of the AM being held in mind. Decreasing emotional intensity primarily engaged activity in regions previously implicated in cognitive control (e.g., dorsal and ventral lateral pFC), emotion generation and processing (e.g., amygdala, insula), and visual imagery (e.g., precuneus) as participants searched for and retrieved events. In contrast, increasing emotional intensity engaged similar regions during the instruction phase (i.e., before a memory cue was presented) and again as individuals later elaborated upon the details of the events they had recalled. These findings confirm that reappraisal can modulate neural activity during the recall of personally relevant events, although the time course of this modulation appears to depend on whether individuals are attempting to down- or up-regulate their emotions.


Sign in / Sign up

Export Citation Format

Share Document