pain modulation
Recently Published Documents


TOTAL DOCUMENTS

1172
(FIVE YEARS 402)

H-INDEX

69
(FIVE YEARS 8)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Tiffani J. Mungoven ◽  
Kasia K. Marciszewski ◽  
Vaughan G. Macefield ◽  
Paul M. Macey ◽  
Luke A. Henderson ◽  
...  

Abstract Background The precise underlying mechanisms of migraine remain unknown. Although we have previously shown acute orofacial pain evoked changes within the brainstem of individuals with migraine, we do not know if these brainstem alterations are driven by changes in higher cortical regions. The aim of this investigation is to extend our previous investigation to determine if higher brain centers display altered activation patterns and connectivity in migraineurs during acute orofacial noxious stimuli. Methods Functional magnetic resonance imaging was performed in 29 healthy controls and 25 migraineurs during the interictal and immediately (within 24-h) prior to migraine phases. We assessed activation of higher cortical areas during noxious orofacial heat stimulation using a thermode device and assessed whole scan and pain-related changes in connectivity. Results Despite similar overall pain intensity ratings between all three groups, migraineurs in the group immediately prior to migraine displayed greater activation of the ipsilateral nucleus accumbens, the contralateral ventrolateral prefrontal cortex and two clusters in the dorsolateral prefrontal cortex (dlPFC). Reduced whole scan dlPFC [Z + 44] connectivity with cortical/subcortical and brainstem regions involved in pain modulation such as the putamen and primary motor cortex was demonstrated in migraineurs. Pain-related changes in connectivity of the dlPFC and the hypothalamus immediately prior to migraine was also found to be reduced with brainstem pain modulatory areas such as the rostral ventromedial medulla and dorsolateral pons. Conclusions These data reveal that the modulation of brainstem pain modulatory areas by higher cortical regions may be aberrant during pain and these alterations in this descending pain modulatory pathway manifests exclusively prior to the development of a migraine attack.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Kinga Gecse ◽  
Dóra Dobos ◽  
Csaba Sándor Aranyi ◽  
Attila Galambos ◽  
Daniel Baksa ◽  
...  

AbstractAltered periaqueductal gray matter (PAG) functional connectivity contributes to brain hyperexcitability in migraine. Although tryptophan modulates neurotransmission in PAG projections through its metabolic pathways, the effect of plasma tryptophan on PAG functional connectivity (PAG-FC) in migraine has not been investigated yet. In this study, using a matched case-control design PAG-FC was measured during a resting-state functional magnetic resonance imaging session in migraine without aura patients (n = 27) and healthy controls (n = 27), and its relationship with plasma tryptophan concentration (TRP) was assessed. In addition, correlations of PAG-FC with age at migraine onset, migraine frequency, trait-anxiety and depressive symptoms were tested and the effect of TRP on these correlations was explored. Our results demonstrated that migraineurs had higher TRP compared to controls. In addition, altered PAG-FC in regions responsible for fear-cascade and pain modulation correlated with TRP only in migraineurs. There was no significant correlation in controls. It suggests increased sensitivity to TRP in migraine patients compared to controls. Trait-anxiety and depressive symptoms correlated with PAG-FC in migraine patients, and these correlations were modulated by TRP in regions responsible for emotional aspects of pain processing, but TRP did not interfere with processes that contribute to migraine attack generation or attack frequency.


2022 ◽  
Vol 15 ◽  
Author(s):  
Nynke J. van den Hoogen ◽  
Erika K. Harding ◽  
Chloé E. D. Davidson ◽  
Tuan Trang

Chronic pain is a complex sensory, cognitive, and emotional experience that imposes a great personal, psychological, and socioeconomic burden on patients. An estimated 1.5 billion people worldwide are afflicted with chronic pain, which is often difficult to treat and may be resistant to the potent pain-relieving effects of opioid analgesics. Attention has therefore focused on advancing new pain therapies directed at the cannabinoid system because of its key role in pain modulation. Endocannabinoids and exogenous cannabinoids exert their actions primarily through Gi/o-protein coupled cannabinoid CB1 and CB2 receptors expressed throughout the nervous system. CB1 receptors are found at key nodes along the pain pathway and their activity gates both the sensory and affective components of pain. CB2 receptors are typically expressed at low levels on microglia, astrocytes, and peripheral immune cells. In chronic pain states, there is a marked increase in CB2 expression which modulates the activity of these central and peripheral immune cells with important consequences for the surrounding pain circuitry. Growing evidence indicate that interventions targeting CB1 or CB2 receptors improve pain outcomes in a variety of preclinical pain models. In this mini-review, we will highlight recent advances in understanding how cannabinoids modulate microglia function and its implications for cannabinoid-mediated analgesia, focusing on microglia-neuron interactions within the spinal nociceptive circuitry.


2021 ◽  
Vol 2 ◽  
Author(s):  
Rima El-Sayed ◽  
Camille Fauchon ◽  
Junseok A. Kim ◽  
Shahrzad Firouzian ◽  
Natalie R. Osborne ◽  
...  

Conditioned pain modulation (CPM) is a physiological measure thought to reflect an individual's endogenous pain modulation system. CPM varies across individuals and provides insight into chronic pain pathophysiology. There is growing evidence that CPM may help predict individual pain treatment outcome. However, paradigm variabilities and practical issues have impeded widespread clinical adoption of CPM assessment. This study aimed to compare two CPM paradigms in people with chronic pain and healthy individuals. A total of 30 individuals (12 chronic pain, 18 healthy) underwent two CPM paradigms. The heat CPM paradigm acquired pain intensity ratings evoked by a test stimulus (TS) applied before and during the conditioning stimulus (CS). The pressure CPM paradigm acquired continuous pain intensity ratings of a gradually increasing TS, before and during CS. Pain intensity was rated from 0 (no pain) to 100 (worst pain imaginable); Pain50 is the stimulus level for a response rated 50. Heat and pressure CPM were calculated as a change in TS pain intensity ratings at Pain50, where negative CPM scores indicate pain inhibition. We also determined CPM in the pressure paradigm as change in pressure pain detection threshold (PDT). We found that in healthy individuals the CPM effect was significantly more inhibitory using the pressure paradigm than the heat paradigm. The pressure CPM effect was also significantly more inhibitory when based on changes at Pain50 than at PDT. However, in individuals with chronic pain there was no significant difference in pressure CPM compared to heat or PDT CPM. There was no significant correlation between clinical pain measures (painDETECT and Brief Pain Inventory) and paradigm type (heat vs. pressure), although heat-based CPM and painDETECT scores showed a trend. Importantly, the pressure paradigm could be administered in less time than the heat paradigm. Thus, our study indicates that in healthy individuals, interpretation of CPM findings should consider potential modality-dependent effects. However, in individuals with chronic pain, either heat or pressure paradigms can similarly be used to assess CPM. Given the practical advantages of the pressure paradigm (e.g., short test time, ease of use), we propose this approach to be well-suited for clinical adoption.


2021 ◽  
Vol 2 ◽  
Author(s):  
Carolane Desmarteaux ◽  
Anouk Streff ◽  
Jen-I Chen ◽  
Bérengère Houzé ◽  
Mathieu Piché ◽  
...  

Background: The effectiveness of hypnosis in reducing pain is well supported by the scientific literature. Hypnosis typically involves verbal suggestions but the mechanisms by which verbal contents are transformed into predictive signals to modulate perceptual processes remain unclear. We hypothesized that brain activity during verbal suggestions would predict the modulation of responses to acute nociceptive stimuli.Methods: Brain activity was measured using BOLD-fMRI in healthy participants while they listened to verbal suggestions of HYPERALGESIA, HYPOALGESIA, or NORMAL sensation (control) following a standardized hypnosis induction. Immediately after the suggestions, series of noxious electrical stimuli were administered to assess pain-related responses. Brain responses measured during the suggestions were then used to predict changes in pain-related responses using delayed regression analyses.Results: Listening to suggestions of HYPERALGESIA and HYPOALGESIA produced BOLD decreases (vs. control) in the parietal operculum (PO) and in the anterior midcingulate cortex (aMCC), and increases in the left parahippocampal gyrus (lPHG). Changes in activity in PO, aMCC and PHG during the suggestions predicted larger pain-evoked responses following the HYPERALGESIA suggestions in the anterior cingulate cortex (ACC) and the anterior insula (aINS), and smaller pain-evoked responses following the HYPOALGESIA suggestions in the ACC, aMCC, posterior insula (pINS) and thalamus. These changes in pain-evoked brain responses are consistent with the changes in pain perception reported by the participants in HYPERALGESIA and HYPOALGESIA, respectively.Conclusions: The fronto-parietal network (supracallosal ACC and PO) has been associated with self-regulation and perceived self-agency. Deactivation of these regions during suggestions is predictive of the modulation of brain responses to noxious stimuli in areas previously associated with pain perception and pain modulation. The response of the hippocampal complex may reflect its role in contextual learning, memory and pain anticipation/expectations induced by verbal suggestions of pain modulation. This study provides a basis to further explore the transformation of verbal suggestions into perceptual modulatory processes fundamental to hypnosis neurophenomenology. These findings are discussed in relation to predictive coding models.


2021 ◽  
Vol 14 (1) ◽  
pp. 106-113
Author(s):  
Zakir Uddin ◽  
Joy C. MacDermid ◽  
Fatma A. Hegazy ◽  
Tara L. Packham

Introduction: Chronic pain has multiple aetiological factors and complexity. Pain theory helps us to guide and organize our thinking to deal with this complexity. The objective of this paper is to critically review the most influential theory in pain science history (the gate control theory of pain) and focus on its implications in chronic pain rehabilitation to minimize disability. Methods: In this narrative review, all the published studies that focused upon pain theory were retrieved from Ovoid Medline (from 1946 till present), EMBAS, AMED and PsycINFO data bases. Results: Chronic pain is considered a disease or dysfunction of the nervous system. In chronic pain conditions, hypersensitivity is thought to develop from changes to the physiological top-down control (inhibitory) mechanism of pain modulation according to the pain theory. Pain hypersensitivity manifestation is considered as abnormal central inhibitory control at the gate controlling mechanism. On the other hand, pain hypersensitivity is a prognostic factor in pain rehabilitation. It is clinically important to detect and manage hypersensitivity responses and their mechanisms. Conclusion: Since somatosensory perception and integration are recognized as a contributor to the pain perception under the theory, then we can use the model to direct interventions aimed at pain relief. The pain theory should be leveraged to develop and refine measurement tools with clinical utility for detecting and monitoring hypersensitivity linked to chronic pain mechanisms.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12330
Author(s):  
Roland R. Reezigt ◽  
Sjoerd C. Kielstra ◽  
Michel W. Coppieters ◽  
Gwendolyne G.M. Scholten-Peeters

Background Conditioned pain modulation (CPM) is measured by comparing pain induced by a test stimulus with pain induced by the same test stimulus, either during (parallel design) or after (sequential design) the conditioning stimulus. Whether design, conditioning stimulus intensity and test stimulus selection affect CPM remains unclear. Methods CPM effects were evaluated in healthy participants (N = 89) at the neck, forearm and lower leg using the cold pressor test as the conditioning stimulus. In three separate experiments, we compared the impact of (1) design (sequential versus parallel), (2) conditioning stimulus intensity (VAS 40/100 versus VAS 60/100), and (3) test stimulus selection (single versus dual, i.e., mechanical and thermal). Statistical analyses of the main effect of design (adjusted for order) and experiment were conducted using linear mixed models with random intercepts. Results No significant differences were identified in absolute CPM data. In relative CPM data, a sequential design resulted in a slightly lower CPM effect compared to a parallel design, and only with a mechanical test stimulus at the neck (−6.1%; 95% CI [−10.1 to −2.1]) and lower leg (−5.9%; 95% CI [−11.7 to −0.1]) but not forearm (−4.5%; 95% CI [−9.0 to 0.1]). Conditioning stimulus intensity and test stimulus selection did not influence the CPM effect nor the difference in CPM effects derived from parallel versus sequential designs. Conclusions Differences in CPM effects between protocols were minimal or absent. A parallel design may lead to a minimally higher relative CPM effect when using a mechanical test stimulus. The conditioning stimulus intensities assessed in this study and performing two test stimuli did not substantially influence the differences between designs nor the magnitude of the CPM effect.


2021 ◽  
Vol 28 ◽  
Author(s):  
Fatemeh Samani ◽  
Masoumeh Kourosh Arami

Background: Hypothalamic neuropeptides, orexins, play pivotal roles in nociception and pain modulation. Objective: In this study, we investigated the effect of the administration of orexin into the paraventricular nucleus (PVT) on the development of morphine-induced analgesia in rats. Method. Male Wistar rats weighing 250-300 g received subcutaneous (s.c.) chronic morphine (6, 16, 26, 36, 46, 56 and 66 mg/kg, 2 ml/kg) at an interval of 24 hours for 7 days. Animals were divided into two experimental groups in which the orexin (100 μM, 200 nl) and its vehicle were microinjected into the PVT nucleus for 7 days before each morphine injection. Then, the formalin test was performed for the assessment of pain-related behaviors. Results: The results demonstrated that the rats pretreated by intra-PVT orexin exhibited higher pain-related behaviors than the morphine-treated group. The analgesic effects of morphine were significantly lower in orexin plus morphine-treated rats than the vehicle plus morphine-treated ones. Conclusion: Our findings suggested that the animals receiving the prolonged intra-PVT application of orexin before morphine injection demonstrated a significant increase in the development of nociceptive behaviors in all phases. Therefore, the present study highlighted a new area of the brain involved in the effect of orexin on analgesia induced by morphine.


Sign in / Sign up

Export Citation Format

Share Document