Insulin signaling gates long-term memory formation in Drosophila larvae

2019 ◽  
Author(s):  
Melanie Eschment ◽  
Hanna R. Franz ◽  
Nazlı Güllü ◽  
Luis G. Hölscher ◽  
Ko-Eun Huh ◽  
...  

AbstractThe ability to learn new skills and to store them as memory entities is one of the most impressive features of higher evolved organisms. However, not all memories are created equal; some are short-lived forms, and some are longer lasting. Formation of the latter is energetically costly and by the reason of restricted availability of food or fluctuations in energy expanses, efficient metabolic homeostasis modulating different needs like survival, growth, reproduction, or investment in longer lasting memories is crucial. Whilst equipped with cellular and molecular pre-requisites for formation of a protein synthesis dependent long-term memory (LTM), its existence in the larval stage of Drosophila remains elusive. Considering it from the viewpoint that larval brain structures are completely rebuilt during metamorphosis, and that this process depends completely on accumulated energy stores formed during the larval stage, investing in LTM represents an unnecessary expenditure. However, as an alternative, Drosophila larvae are equipped with the capacity to form a protein synthesis independent so-called larval anaesthesia resistant memory (lARM), which is consolidated in terms of being insensitive to cold-shock treatments. Motivated by the fact that LTM formation causes an increase in energy uptake in Drosophila adults, we tested the idea of whether an energy surplus can induce the formation of LTM in the larval stage. Indeed, increasing the metabolic state by feeding Drosophila larvae the disaccharide sucrose directly before aversive olfactory conditioning led to the formation of a larval LTM (lLTM). Moreover, we show that the metabolic state acts as a binary switch between the formation of lARM and lLTM. Based on this finding, we determined that it is the insulin receptor (InR) expressed in the mushroom body Kenyon cells (MB KCs) that mediates this switch to favor the formation of lLTM under energy-rich circumstances and lARM under energy-poor circumstances.

PLoS Genetics ◽  
2020 ◽  
Vol 16 (10) ◽  
pp. e1009064
Author(s):  
Melanie Eschment ◽  
Hanna R. Franz ◽  
Nazlı Güllü ◽  
Luis G. Hölscher ◽  
Ko-Eun Huh ◽  
...  

The ability to learn new skills and to store them as memory entities is one of the most impressive features of higher evolved organisms. However, not all memories are created equal; some are short-lived forms, and some are longer lasting. Formation of the latter is energetically costly and by the reason of restricted availability of food or fluctuations in energy expanses, efficient metabolic homeostasis modulating different needs like survival, growth, reproduction, or investment in longer lasting memories is crucial. Whilst equipped with cellular and molecular pre-requisites for formation of a protein synthesis dependent long-term memory (LTM), its existence in the larval stage of Drosophila remains elusive. Considering it from the viewpoint that larval brain structures are completely rebuilt during metamorphosis, and that this process depends completely on accumulated energy stores formed during the larval stage, investing in LTM represents an unnecessary expenditure. However, as an alternative, Drosophila larvae are equipped with the capacity to form a protein synthesis independent so-called larval anaesthesia resistant memory (lARM), which is consolidated in terms of being insensitive to cold-shock treatments. Motivated by the fact that LTM formation causes an increase in energy uptake in Drosophila adults, we tested the idea of whether an energy surplus can induce the formation of LTM in the larval stage. Suprisingly, increasing the metabolic state by feeding Drosophila larvae the disaccharide sucrose directly before aversive olfactory conditioning led to the formation of a protein synthesis dependent longer lasting memory. Moreover, formation of this memory component is accompanied by the suppression of lARM. We ascertained that insulin receptors (InRs) expressed in the mushroom body Kenyon cells suppresses the formation of lARM and induces the formation of a protein synthesis dependent longer lasting memory in Drosophila larvae. Given the numerical simplicity of the larval nervous system this work offers a unique prospect to study the impact of insulin signaling on the formation of protein synthesis dependent memories on a molecular level.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Bohan Zhao ◽  
Jiameng Sun ◽  
Xuchen Zhang ◽  
Han Mo ◽  
Yijun Niu ◽  
...  

Abstract It is believed that long-term memory (LTM) cannot be formed immediately because it must go through a protein synthesis-dependent consolidation process. However, the current study uses Drosophila aversive olfactory conditioning to show that such processes are dispensable for context-dependent LTM (cLTM). Single-trial conditioning yields cLTM that is formed immediately in a protein-synthesis independent manner and is sustained over 14 days without decay. Unlike retrieval of traditional LTM, which requires only the conditioned odour and is mediated by mushroom-body neurons, cLTM recall requires both the conditioned odour and reinstatement of the training-environmental context. It is mediated through lateral-horn neurons that connect to multiple sensory brain regions. The cLTM cannot be retrieved if synaptic transmission from any one of these centres is blocked, with effects similar to those of altered encoding context during retrieval. The present study provides strong evidence that long-term memory can be formed easily without the need for consolidation.


2021 ◽  
pp. 174702182110105
Author(s):  
Spencer Talbot ◽  
Todor Gerdjikov ◽  
Carlo De Lillo

Assessing variations in cognitive function between humans and animals is vital for understanding the idiosyncrasies of human cognition and for refining animal models of human brain function and disease. We determined memory functions deployed by mice and humans to support foraging with a search task acting as a test battery. Mice searched for food from the top of poles within an open-arena. Poles were divided into groups based on visual cues and baited according to different schedules. White and black poles were baited in alternate trials. Striped poles were never baited. The requirement of the task was to find all baits in each trial. Mice’s foraging efficiency, defined as the number of poles visited before all baits were retrieved, improved with practice. Mice learnt to avoid visiting un-baited poles across trials (Long-term memory) and revisits to poles within each trial (Working memory). Humans tested with a virtual-reality version of the task outperformed mice in foraging efficiency, working memory and exploitation of the temporal pattern of rewards across trials. Moreover, humans, but not mice, reduced the number of possible movement sequences used to search the set of poles. For these measures interspecies differences were maintained throughout three weeks of testing. By contrast, long-term-memory for never-rewarded poles was similar in mice and humans after the first week of testing. These results indicate that human cognitive functions relying upon archaic brain structures may be adequately modelled in mice. Conversely, modelling in mice fluid skills likely to have developed specifically in primates, requires caution.


2013 ◽  
Vol 106 ◽  
pp. 246-257 ◽  
Author(s):  
Daniele Lana ◽  
Francesca Cerbai ◽  
Jacopo Di Russo ◽  
Francesca Boscaro ◽  
Ambra Giannetti ◽  
...  

2005 ◽  
Vol 102 (45) ◽  
pp. 16432-16437 ◽  
Author(s):  
D. L. Alkon ◽  
H. Epstein ◽  
A. Kuzirian ◽  
M. C. Bennett ◽  
T. J. Nelson

Sign in / Sign up

Export Citation Format

Share Document