scholarly journals Chemogenetic actuator drugs impair prefrontal cortex-dependent working memory in rhesus monkeys

2019 ◽  
Author(s):  
Nicholas A. Upright ◽  
Mark G. Baxter

AbstractThe most common chemogenetic neuromodulatory system, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), uses a non-endogenous actuator ligand to activate a modified muscarinic acetylcholine receptor that is no longer sensitive to acetylcholine. It is crucial in studies using these systems to test the potential effects of DREADD actuators prior to any DREADD transduction, so that effects of DREADDs can be attributed to the chemogenetic system rather than the actuator drug. We investigated working memory performance after injections of three DREADD agonists, clozapine, olanzapine, and deschloroclozapine, in male rhesus monkeys tested in a spatial delayed response task. Performance at 0.1 mg/kg clozapine and 0.1 mg/kg deschloroclozapine did not differ from mean performance after vehicle in any of the four subjects. Administration of 0.2 mg/kg clozapine impaired working memory function in three of the four monkeys. Two monkeys were impaired after administration of 0.1 mg/kg olanzapine and two monkeys were impaired after the 0.3 mg/kg dose of deschloroclozapine. We speculate that the unique neuropharmacology of prefrontal cortex function makes the primate prefrontal cortex especially vulnerable to off-target effects of DREADD actuator drugs with affinity for endogenous monoaminergic receptor systems. These findings underscore the importance of within-subject controls for DREADD actuator drugs to confirm that effects following DREADD receptor transduction are not due to the actuator drug itself, as well as validating the behavioral pharmacology of DREADD actuator drugs in the specific tasks under study.Significance StatementChemogenetic technologies, such as Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), allow for precise and remote manipulation of neuronal circuits. In the present study, we tested monkeys in a spatial delayed response task after injections of three actuator drugs – clozapine, olanzapine, and deschloroclozapine. We found that monkeys showed significant working memory impairments after 0.2 mg/kg clozapine, 0.1 mg/kg olanzapine, and 0.3 mg/kg deschloroclozapine compared to vehicle performance. In monkeys that showed impairments, these deficits were particularly apparent at longer delay periods. It is imperative to validate the drugs and dosages in the particular behavioral test to ensure any behavior after DREADD transduction can be attributed to activation of the receptors and not administration of the actuator drug itself.

2018 ◽  
Author(s):  
Nicholas A. Upright ◽  
Stephen W. Brookshire ◽  
Wendy Schnebelen ◽  
Christienne G. Damatac ◽  
Patrick R. Hof ◽  
...  

AbstractWe used inhibitory DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) to reversibly disrupt dorsolateral prefrontal cortex (dlPFC) function in male macaque monkeys. Monkeys were tested on a spatial delayed response task to assess working memory function after intramuscular injection of either clozapine-N-oxide (CNO) or vehicle. CNO injections given before DREADD transduction were without effect on behavior. rAAV5/hsyn-hM4Di-mCherry was injected bilaterally into the dlPFC of five male rhesus monkeys, to produce neuronal expression of the inhibitory (Gi-coupled) DREADD receptor. We quantified the percentage of DREADD- transduced cells using stereological analysis of mCherry-immunolabeled cells. We found a greater number of immunolabeled neurons in monkeys that displayed CNO-induced behavioral impairment after DREADD transduction compared to monkeys that showed no behavioral effect after CNO. Even in monkeys that showed reliable effects of CNO on behavior after DREADD transduction, the number of prefrontal neurons transduced with DREADD receptor was on the order of 3% of total prefrontal neurons counted. This level of histological analysis facilitates our understanding of behavioral effects, or lack thereof, after DREADD vector injection in monkeys. It also implies that a functional silencing of a relatively small fraction of dlPFC neurons, albeit in a widely distributed area, is sufficient to disrupt spatial working memory.Significance StatementCognitive domains such as working memory and executive function are mediated by the dorsolateral prefrontal cortex (dlPFC). Impairments in these domains are common in neurodegenerative diseases as well as normal aging. The present study sought to measure deficits in a spatial delayed response task following activation of viral-vector transduced inhibitory DREADD (Designer Receptor Exclusively Activated by Designer Drug) receptors in rhesus macaques and compare this to the level of transduction in dlPFC using stereology. We found a significant relationship between the extent of DREADD transduction and the magnitude of behavioral deficit following administration of the DREADD actuator compound clozapine-N- oxide (CNO). These results demonstrate it will be critical to validate transduction to ensure DREADDs remain a powerful tool for neuronal disruption.


1999 ◽  
Vol 275 (1) ◽  
pp. 9-12 ◽  
Author(s):  
P Stratta ◽  
E Daneluzzo ◽  
P Prosperini ◽  
M Bustini ◽  
M.G Marinangeli ◽  
...  

2003 ◽  
Vol 90 (5) ◽  
pp. 3441-3454 ◽  
Author(s):  
Albert Compte, ◽  
Christos Constantinidis ◽  
Jesper Tegnér ◽  
Sridhar Raghavachari ◽  
Matthew V. Chafee ◽  
...  

An important question in neuroscience is whether and how temporal patterns and fluctuations in neuronal spike trains contribute to information processing in the cortex. We have addressed this issue in the memory-related circuits of the prefrontal cortex by analyzing spike trains from a database of 229 neurons recorded in the dorsolateral prefrontal cortex of 4 macaque monkeys during the performance of an oculomotor delayed-response task. For each task epoch, we have estimated their power spectrum together with interspike interval histograms and autocorrelograms. We find that 1) the properties of most (about 60%) neurons approximated the characteristics of a Poisson process. For about 25% of cells, with characteristics typical of interneurons, the power spectrum showed a trough at low frequencies (<20 Hz) and the autocorrelogram a dip near zero time lag. About 15% of neurons had a peak at <20 Hz in the power spectrum, associated with the burstiness of the spike train; 2) a small but significant task dependency of spike-train temporal structure: delay responses to preferred locations were characterized not only by elevated firing, but also by suppressed power at low (<20 Hz) frequencies; and 3) the variability of interspike intervals is typically higher during the mnemonic delay period than during the fixation period, regardless of the remembered cue. The high irregularity of neural persistent activity during the delay period is likely to be a characteristic signature of recurrent prefrontal network dynamics underlying working memory.


2020 ◽  
Author(s):  
Megan Roussy ◽  
Rogelio Luna ◽  
Lyndon Duong ◽  
Benjamin Corrigan ◽  
Roberto A. Gulli ◽  
...  

SummaryThe primate lateral prefrontal cortex (LPFC) is considered fundamental for temporarily maintaining and manipulating mental representations that serve behavior, a cognitive function known as working memory1. Studies in non-human primates have shown that LPFC lesions impair working memory2 and that LPFC neuronal activity encodes working memory representations3. However, such studies have used simple displays and constrained gaze while subjects held information in working memory3, which put into question their ethological validity4,5. Currently, it remains unclear whether LPFC microcircuits can support working memory function during natural behavior. We tested macaque monkeys in a working memory navigation task in a life-like virtual environment while their gaze was unconstrained. We show that LPFC neuronal populations robustly encode working memory representations in these conditions. Furthermore, low doses of the NMDA receptor antagonist, ketamine, impaired working memory performance while sparing perceptual and motor skills. Ketamine decreased the firing of narrow spiking inhibitory interneurons and increased the firing of broad spiking cells reducing population decoding accuracy for remembered locations. Our results show that primate LPFC generates robust neural codes for working memory in naturalistic settings and that such codes rely upon a fine balance between the activation of excitatory and inhibitory neurons.


2012 ◽  
Vol 24 (6) ◽  
pp. 1371-1381 ◽  
Author(s):  
Abigail Z. Rajala ◽  
Jeffrey B. Henriques ◽  
Luis C. Populin

Low doses of methylphenidate reduce hyperactivity and improve attention in individuals with attention deficit hyperactivity disorder (ADHD) as well as in healthy humans and animals. Despite its extensive use, relatively little is known about its mechanisms of action. This study investigated the effects of methylphenidate on working memory performance, impulsivity, response accuracy and precision, and the ability to stay on task in rhesus monkeys using an oculomotor delayed response task. Methylphenidate affected task performance in an inverted-U manner in all three subjects tested. The improvements resulted from a reduction in premature responses and, importantly, not from improvement in the memory of target location. The length of time subjects participated in each session was also affected dose dependently. However, the dose at which the length of participation was maximally increased significantly impaired performance on the working memory task. This dissociation of effects has implications for the treatment of ADHD, for the nonprescription use of methylphenidate for cognitive enhancement, and for furthering the basic understanding of the neural substrate underlying these processes.


2019 ◽  
Vol 29 (12) ◽  
pp. 4948-4957 ◽  
Author(s):  
Laura Musazzi ◽  
Nathalie Sala ◽  
Paolo Tornese ◽  
Francesca Gallivanone ◽  
Sara Belloli ◽  
...  

Abstract Brain energy metabolism actively regulates synaptic transmission and activity. We have previously shown that acute footshock (FS)-stress induces fast and long-lasting functional and morphological changes at excitatory synapses in prefrontal cortex (PFC). Here, we asked whether FS-stress increased energy metabolism in PFC, and modified related cognitive functions. Using positron emission tomography (PET), we found that FS-stress induced a redistribution of glucose metabolism in the brain, with relative decrease of [18F]FDG uptake in ventro-caudal regions and increase in dorso-rostral ones. Absolute [18F]FDG uptake was inversely correlated with serum corticosterone. Increased specific hexokinase activity was also measured in purified PFC synaptosomes (but not in total extract) of FS-stressed rats, which positively correlated with 2-Deoxy [3H] glucose uptake by synaptosomes. In line with increased synaptic energy demand, using an electron microscopy-based stereological approach, we found that acute stress induced a redistribution of mitochondria at excitatory synapses, together with an increase in their volume. The fast functional and metabolic activation of PFC induced by acute stress, was accompanied by rapid and sustained alterations of working memory performance in delayed response to T-maze test. Taken together, the present data suggest that acute stress increases energy consumption at PFC synaptic terminals and alters working memory.


Sign in / Sign up

Export Citation Format

Share Document