scholarly journals Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models

2015 ◽  
Vol 29 (3) ◽  
pp. 288-297 ◽  
Author(s):  
Yimin Hua ◽  
Ying Hsiu Liu ◽  
Kentaro Sahashi ◽  
Frank Rigo ◽  
C. Frank Bennett ◽  
...  
Biochimie ◽  
2002 ◽  
Vol 84 (11) ◽  
pp. 1151-1160 ◽  
Author(s):  
Janice Robertson ◽  
Jasna Kriz ◽  
Minh Dang Nguyen ◽  
Jean-Pierre Julien

2020 ◽  
Author(s):  
A Rietz ◽  
KJ Hodgetts ◽  
H Lusic ◽  
KM Quist ◽  
EY Osman ◽  
...  

AbstractSpinal muscular atrophy (SMA) is a motor neuron disease and the leading cause of infant mortality. SMA results from insufficient survival motor neuron protein (SMN) levels due to alternative splicing. Antisense oligonucleotides, gene therapy and splicing modifiers recently received FDA approval. However, early intervention is required for optimal outcomes, and even continuous treatment maybe insufficient to restore full motor function. Although severe SMA transgenic mouse models have been beneficial for testing therapeutic efficacy, models mimicking milder cases that manifest post-infancy have proven challenging to develop. We have established a titratable model of mild and moderate SMA using the splicing compound NVS-SM2. Administration for 30 days prevented development of the SMA phenotype in severe SMA mice, which typically show rapid weakness and succumb by postnatal day 11. Furthermore, administration at day eight resulted in phenotypic recovery. Remarkably, acute dosing limited to the first three days of life significantly enhanced survival in two severe SMA mice models, easing the burden on neonates and demonstrating the compound as suitable for evaluation of follow-on therapies without potential drug-drug interactions.


2020 ◽  
Vol 4 (1) ◽  
pp. e202000889
Author(s):  
Anne Rietz ◽  
Kevin J Hodgetts ◽  
Hrvoje Lusic ◽  
Kevin M Quist ◽  
Erkan Y Osman ◽  
...  

Spinal muscular atrophy (SMA) is a motor neuron disease and the leading genetic cause of infant mortality. SMA results from insufficient survival motor neuron (SMN) protein due to alternative splicing. Antisense oligonucleotides, gene therapy and splicing modifiers recently received FDA approval. Although severe SMA transgenic mouse models have been beneficial for testing therapeutic efficacy, models mimicking milder cases that manifest post-infancy have proven challenging to develop. We established a titratable model of mild and moderate SMA using the splicing compound NVS-SM2. Administration for 30 d prevented development of the SMA phenotype in severe SMA mice, which typically show rapid weakness and succumb by postnatal day 11. Furthermore, administration at day eight resulted in phenotypic recovery. Remarkably, acute dosing limited to the first 3 d of life significantly enhanced survival in two severe SMA mice models, easing the burden on neonates and demonstrating the compound as suitable for evaluation of follow-on therapies without potential drug–drug interactions. This pharmacologically tunable SMA model represents a useful tool to investigate cellular and molecular pathogenesis at different stages of disease.


2003 ◽  
Vol 100 (1-4) ◽  
pp. 243-251 ◽  
Author(s):  
M. Katsuno ◽  
H. Adachi ◽  
A. Inukai ◽  
G. Sobue

Neurology ◽  
1996 ◽  
Vol 47 (Issue 4, Supplement 2) ◽  
pp. 54S-62S ◽  
Author(s):  
D. W. Cleveland ◽  
L. I. Bruijn ◽  
P. C. Wong ◽  
J. R. Marszalek ◽  
J. D. Vechio ◽  
...  

Diabetes ◽  
1990 ◽  
Vol 39 (8) ◽  
pp. 879-884 ◽  
Author(s):  
M. A. Lipes ◽  
G. S. Eisenbarth

Sign in / Sign up

Export Citation Format

Share Document