motor neuron death
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 26)

H-INDEX

36
(FIVE YEARS 4)

2021 ◽  
Vol 79 (1) ◽  
Author(s):  
Paola Fabbrizio ◽  
Jessica D’Agostino ◽  
Cassandra Margotta ◽  
Giulia Mella ◽  
Nicolò Panini ◽  
...  

AbstractAmyotrophic lateral sclerosis is a fatal neurodegenerative disorder that leads to progressive degeneration of motor neurons and severe muscle atrophy without effective treatment. Most research on the disease has been focused on studying motor neurons and supporting cells of the central nervous system. Strikingly, the recent observations have suggested that morpho-functional alterations in skeletal muscle precede motor neuron degeneration, bolstering the interest in studying muscle tissue as a potential target for the delivery of therapies. We previously showed that the systemic administration of the P2XR7 agonist, 2′(3′)-O‐(4-benzoylbenzoyl) adenosine 5-triphosphate (BzATP), enhanced the metabolism and promoted the myogenesis of new fibres in the skeletal muscles of SOD1G93A mice. Here we further corroborated this evidence showing that intramuscular administration of BzATP improved the motor performance of ALS mice by enhancing satellite cells and the muscle pro-regenerative activity of infiltrating macrophages. The preservation of the skeletal muscle retrogradely propagated along with the motor unit, suggesting that backward signalling from the muscle could impinge on motor neuron death. In addition to providing the basis for a suitable adjunct multisystem therapeutic approach in ALS, these data point out that the muscle should be at the centre of ALS research as a target tissue to address novel therapies in combination with those oriented to the CNS.


Author(s):  
Taide Wang ◽  
Doris Tomas ◽  
Nirma D. Perera ◽  
Brittany Cuic ◽  
Sophia Luikinga ◽  
...  

mBio ◽  
2021 ◽  
Author(s):  
Meenakshi Bhaskar ◽  
Sriparna Mukherjee ◽  
Anirban Basu

Neurotropic viral infections are an increasingly common cause of immediate or delayed neuropsychiatric sequelae, cognitive impairment, and movement disorders or, in severe cases, death. Given the highest reported disability-adjusted life years and mortality rate worldwide, a better understanding of molecular mechanisms for underlying clinical manifestations like AFP will help in development of more effective tools for therapeutic solutions.


2021 ◽  
Vol 20 (3) ◽  
pp. 193-202
Author(s):  
A. V. Savinova ◽  
N. A. Shnayder ◽  
R. F. Nasyrova

To analyze results of the studies covering modern scientific views on the genetics of familial amyotrophic lateral sclerosis (FALS).We searched for full-text publications containing the key words “amyotrophic lateral sclerosis”, “FALS”, and “genetics” in the literature for the past 10 years in both Russian and English in eLibrary, PubMed, Web of Science, and OMIM databases. In addition, the review includes earlier publications of historical interest.This review summarizes all existing information on four most widespread genes associated with FALS: SOD1, TARDBP, FUS, and C9ORF72. The review also describes the functions of these genes and possible pathogenetic mechanisms of motor neuron death in amyotrophic lateral sclerosis (ALS), such as mitochondrial dysfunction, oxidative stress, glutamate excitotoxicity, damage to axonal transport components, and pathological neurofilament aggregation.As modern methods of molecular genetic diagnostics evolve, our knowledge about multifactorial FALS genetics expands. This information should be taken into consideration in clinical practice of neurologists. Information about the genes associated with ALS and understanding of particular pathogenetic mechanisms of the disease play a key role in the development of effective therapeutic strategies.


2021 ◽  
Author(s):  
Omkar Kovvali

Abstract Amyotrophic Lateral Sclerosis, known as ALS, is a neurodegenerative disease that passes the death sentence on 15 new people every day, leaving a patient struggling to move their fingers. At the molecular level, motor neuron death causes the inability for the muscles to function as normal. After researchers studied motor neuron death in ALS patients’ cells, they found that in all diseased cells, the SFPQ protein, a vital nuclear DNA/RNA binding protein, left the nucleus (its original location) and ended up in the cytoplasm. Since this defect was a molecular hallmark of ALS, solving this problem could stop motor neuron death. To treat this molecular hallmark, the in-silico process was used to sift through thousands of potential molecules to find the best one to use. The in-silico method was used to identify a lead molecule (NLS 551) that passed all the in-silico tests and brought the SFPQ protein back into the nucleus. If successful, this identified molecule could serve as the base for an ALS treatment.


2021 ◽  
Vol 22 (17) ◽  
pp. 9430
Author(s):  
Jing Zhao ◽  
Claire H. Stevens ◽  
Andrew W. Boyd ◽  
Lezanne Ooi ◽  
Perry F. Bartlett

Motor neuron disease (MND) comprises a group of fatal neurodegenerative diseases with no effective cure. As progressive motor neuron cell death is one of pathological characteristics of MND, molecules which protect these cells are attractive therapeutic targets. Accumulating evidence indicates that EphA4 activation is involved in MND pathogenesis, and inhibition of EphA4 improves functional outcomes. However, the underlying mechanism of EphA4’s function in MND is unclear. In this review, we first present results to demonstrate that EphA4 signalling acts directly on motor neurons to cause cell death. We then review the three most likely mechanisms underlying this effect.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sarah Caldwell ◽  
Douglas L. Rothman

At present, limited biomarkers exist to reliably understand, diagnose, and monitor the progression of amyotrophic lateral sclerosis (ALS), a fatal neurological disease characterized by motor neuron death. Standard MRI technology can only be used to exclude a diagnosis of ALS, but 1H-MRS technology, which measures neurochemical composition, may provide the unique ability to reveal biomarkers that are specific to ALS and sensitive enough to diagnose patients at early stages in disease progression. In this review, we present a summary of current theories of how mitochondrial energetics and an altered glutamate/GABA neurotransmitter flux balance play a role in the pathogenesis of ALS. The theories are synthesized into a model that predicts how pathogenesis impacts glutamate and GABA concentrations. When compared with the results of all MRS studies published to date that measure the absolute concentrations of these neurochemicals in ALS patients, results were variable. However, when normalized for neuronal volume using the MRS biomarker N-acetyl aspartate (NAA), there is clear evidence for an elevation of neuronal glutamate in nine out of thirteen studies reviewed, an observation consistent with the predictions of the model of increased activity of glutamatergic neurons and excitotoxicity. We propose that this increase in neuronal glutamate concentration, in combination with decreased neuronal volume, is specific to the pathology of ALS. In addition, when normalized to glutamate levels, there is clear evidence for a decrease in neuronal GABA in three out of four possible studies reviewed, a finding consistent with a loss of inhibitory regulation contributing to excessive neuronal excitability. The combination of a decreased GABA/Glx ratio with an elevated Glx/NAA ratio may enhance the specificity for 1H-MRS detection of ALS and ability to monitor glutamatergic and GABAergic targeted therapeutics. Additional longitudinal studies calculating the exact value of these ratios are needed to test these hypotheses and understand how ratios may change over the course of disease progression. Proposed modifications to the experimental design of the reviewed 1H MRS studies may also increase the sensitivity of the technology to changes in these neurochemicals, particularly in early stages of disease progression.


Author(s):  
Lauren F. Borkowski ◽  
Catherine L. Smith ◽  
Amy N. Keilholz ◽  
Nicole L. Nichols

Intrapleural injection of cholera toxin B conjugated to saporin (CTB-SAP) mimics respiratory motor neuron death and respiratory deficits observed in rat models of neuromuscular diseases. 7d CTB-SAP rats elicit enhanced phrenic long-term facilitation (pLTF) primarily through TrkB and PI3K/Akt-dependent mechanisms (i.e., Gs-pathway, which can be initiated by adenosine 2A (A2A) receptors in naïve rats), while 28d CTB-SAP rats elicit moderate pLTF though BDNF and MEK/ERK-dependent mechanisms (i.e., Gq-pathway, which is typically initiated by serotonin (5-HT) receptors in naïve rats). Here, we tested the hypothesis that pLTF following CTB-SAP is: 1) A2A receptor-dependent at 7d; and 2) 5-HT receptor-dependent at 28d. Adult Sprague Dawley male rats were anesthetized, paralyzed, ventilated, and were exposed to acute intermittent hypoxia (AIH; 3, 5 min bouts of 10.5% O2) following bilateral, intrapleural injections at 7d and 28d of: 1) CTB-SAP (25 μg), or 2) un-conjugated CTB and SAP (control). Intrathecal C4 delivery included either the: 1) A2A receptor antagonist (MSX-3; 10 μM; 12 μl); or 2) 5-HT receptor antagonist (methysergide; 20 mM; 15 μl). pLTF was abolished with A2A receptor inhibition in 7d, not 28d, CTB-SAP rats vs. controls (p<0.05), while pLTF was abolished following 5-HT receptor inhibition in 28d, not 7d, CTB-SAP rats vs. controls (p<0.05). Additionally, 5-HT2A receptor expression was unchanged in CTB-SAP rats vs. controls, while 5-HT2B receptor expression was decreased in CTB-SAP rats vs. controls (p<0.05). This study furthers our understanding of the contribution of differential receptor activation to pLTF and its implications for breathing following respiratory motor neuron death.


Sign in / Sign up

Export Citation Format

Share Document