scholarly journals Short-duration splice promoting compound enables a tunable mouse model of spinal muscular atrophy

2020 ◽  
Vol 4 (1) ◽  
pp. e202000889
Author(s):  
Anne Rietz ◽  
Kevin J Hodgetts ◽  
Hrvoje Lusic ◽  
Kevin M Quist ◽  
Erkan Y Osman ◽  
...  

Spinal muscular atrophy (SMA) is a motor neuron disease and the leading genetic cause of infant mortality. SMA results from insufficient survival motor neuron (SMN) protein due to alternative splicing. Antisense oligonucleotides, gene therapy and splicing modifiers recently received FDA approval. Although severe SMA transgenic mouse models have been beneficial for testing therapeutic efficacy, models mimicking milder cases that manifest post-infancy have proven challenging to develop. We established a titratable model of mild and moderate SMA using the splicing compound NVS-SM2. Administration for 30 d prevented development of the SMA phenotype in severe SMA mice, which typically show rapid weakness and succumb by postnatal day 11. Furthermore, administration at day eight resulted in phenotypic recovery. Remarkably, acute dosing limited to the first 3 d of life significantly enhanced survival in two severe SMA mice models, easing the burden on neonates and demonstrating the compound as suitable for evaluation of follow-on therapies without potential drug–drug interactions. This pharmacologically tunable SMA model represents a useful tool to investigate cellular and molecular pathogenesis at different stages of disease.

2020 ◽  
Author(s):  
A Rietz ◽  
KJ Hodgetts ◽  
H Lusic ◽  
KM Quist ◽  
EY Osman ◽  
...  

AbstractSpinal muscular atrophy (SMA) is a motor neuron disease and the leading cause of infant mortality. SMA results from insufficient survival motor neuron protein (SMN) levels due to alternative splicing. Antisense oligonucleotides, gene therapy and splicing modifiers recently received FDA approval. However, early intervention is required for optimal outcomes, and even continuous treatment maybe insufficient to restore full motor function. Although severe SMA transgenic mouse models have been beneficial for testing therapeutic efficacy, models mimicking milder cases that manifest post-infancy have proven challenging to develop. We have established a titratable model of mild and moderate SMA using the splicing compound NVS-SM2. Administration for 30 days prevented development of the SMA phenotype in severe SMA mice, which typically show rapid weakness and succumb by postnatal day 11. Furthermore, administration at day eight resulted in phenotypic recovery. Remarkably, acute dosing limited to the first three days of life significantly enhanced survival in two severe SMA mice models, easing the burden on neonates and demonstrating the compound as suitable for evaluation of follow-on therapies without potential drug-drug interactions.


2016 ◽  
Vol 10 ◽  
pp. JEN.S33122 ◽  
Author(s):  
Saif Ahmad ◽  
Kanchan Bhatia ◽  
Annapoorna Kannan ◽  
Laxman Gangwani

Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease with a high incidence and is the most common genetic cause of infant mortality. SMA is primarily characterized by degeneration of the spinal motor neurons that leads to skeletal muscle atrophy followed by symmetric limb paralysis, respiratory failure, and death. In humans, mutation of the Survival Motor Neuron 1 (SMN1) gene shifts the load of expression of SMN protein to the SMN2 gene that produces low levels of full-length SMN protein because of alternative splicing, which are sufficient for embryonic development and survival but result in SMA. The molecular mechanisms of the (a) regulation of SMN gene expression and (b) degeneration of motor neurons caused by low levels of SMN are unclear. However, some progress has been made in recent years that have provided new insights into understanding of the cellular and molecular basis of SMA pathogenesis. In this review, we have briefly summarized recent advances toward understanding of the molecular mechanisms of regulation of SMN levels and signaling mechanisms that mediate neurodegeneration in SMA.


2018 ◽  
Vol 29 (2) ◽  
pp. 96-110 ◽  
Author(s):  
Kelsey M. Gray ◽  
Kevin A. Kaifer ◽  
David Baillat ◽  
Ying Wen ◽  
Thomas R. Bonacci ◽  
...  

SMN protein levels inversely correlate with the severity of spinal muscular atrophy. The SCFSlmbE3 ligase complex interacts with a degron embedded within the C-terminal self-oligomerization domain of SMN. The findings elucidate a model whereby accessibility of the SMN degron is regulated by self-multimerization.


Author(s):  
V. Manochithra ◽  
G. Sumithra

Spinal muscular atrophy (SMA) describes a group of disorders associated with spinal motor neuron loss. In this review we provide an update regarding the most common form of SMA, proximal or 5q SMA, and discuss the contemporary approach to diagnosis and treatment. Electromyography and muscle biopsy features of denervation were once the basis for diagnosis, but molecular testing for homozygous deletion or mutation of the SMN1 gene allows efficient and specific diagnosis. In combination with loss of SMN1, patients retain variable numbers of copies of a second similar gene, SMN2, which produce reduced levels of the survival motor neuron (SMN) protein that are insufficient for normal motor neuron function. Despite the fact that the understanding of how ubiquitous reduction of SMN protein leads to motor neuron loss remains incomplete, several promising therapeutics are now being tested in early phase clinical trials. This proposed model investigates the symptoms and scans readings from the initial MRI scan images of babies with mutation progress and SMN proteins formation benchmark values for this particular disorder SMA and further this segmented parameters are acquitted into the K-means clustering technique that predict the report with the disorder symptoms with MSE (mean square error) values that helps the babies in future to take prevention measures to overcome this problem.


2016 ◽  
Author(s):  
◽  
Madeline R. Miller

Spinal Muscular Atrophy is clinically recognized as a progressive weakness within the trunk and proximal limbs that will lead to breathing failure and death within infants. As a neurodegenerative genetic disease, SMA is caused by loss of motor neurons, which in turn is caused by low levels of the Survival Motor Neuron (SMN) protein. The mechanism by which a ubiquitously expressed protein such as SMN is able to cause the specific death of motor neurons is highly debated and of great interest. Work presented here focuses on understanding the biological requirements of SMN and its downstream effects on the neuromuscular junction. To this end we utilize viral based gene delivery as a powerful tool to assess the effects of genes of interest in vivo. Our findings contribute to the conversation regarding whether SMA is truly a "motor neuron" disease, suggesting that astrocytes play a meaningful role in staving off SMA. Further, we investigate the domains within SMN needed to maintain its function in a mammalian system. We take a novel and challenging approach to identify a minimal domain capable of maintaining function. Finally, we demonstrate the practical use of morophological analysis of the neuromuscular junction as a means to characterize SMA pathology.


Sign in / Sign up

Export Citation Format

Share Document