scholarly journals Corrigendum: CLIP (Cross-Linking and Immunoprecipitation) Identification of RNAs Bound by a Specific Protein

2022 ◽  
Vol 2022 (1) ◽  
pp. pdb.corr107811
Author(s):  
Robert B. Darnell
1999 ◽  
Vol 147 (6) ◽  
pp. 1275-1286 ◽  
Author(s):  
Conrad L. Leung ◽  
Dongming Sun ◽  
Min Zheng ◽  
David R. Knowles ◽  
Ronald K.H. Liem

We cloned and characterized a full-length cDNA of mouse actin cross-linking family 7 (mACF7) by sequential rapid amplification of cDNA ends–PCR. The completed mACF7 cDNA is 17 kb and codes for a 608-kD protein. The closest relative of mACF7 is the Drosophila protein Kakapo, which shares similar architecture with mACF7. mACF7 contains a putative actin-binding domain and a plakin-like domain that are highly homologous to dystonin (BPAG1-n) at its NH2 terminus. However, unlike dystonin, mACF7 does not contain a coiled–coil rod domain; instead, the rod domain of mACF7 is made up of 23 dystrophin-like spectrin repeats. At its COOH terminus, mACF7 contains two putative EF-hand calcium-binding motifs and a segment homologous to the growth arrest–specific protein, Gas2. In this paper, we demonstrate that the NH2-terminal actin-binding domain of mACF7 is functional both in vivo and in vitro. More importantly, we found that the COOH-terminal domain of mACF7 interacts with and stabilizes microtubules. In transfected cells full-length mACF7 can associate not only with actin but also with microtubules. Hence, we suggest a modified name: MACF (microtubule actin cross-linking factor). The properties of MACF are consistent with the observation that mutations in kakapo cause disorganization of microtubules in epidermal muscle attachment cells and some sensory neurons.


1997 ◽  
Vol 325 (2) ◽  
pp. 455-463 ◽  
Author(s):  
Tatsumi HARUTA ◽  
Noboru TAKAMI ◽  
Manami OHMURA ◽  
Yoshio MISUMI ◽  
Yukio IKEHARA

The synaptic vesicle exocytosis occurs by a highly regulated mechanism: syntaxin and 25 kDa synaptosome-associated protein (SNAP-25) are assembled with vesicle-associated membrane protein (VAMP) to form a synaptic core complex and then synaptotagmin participates as a Ca2+ sensor in the final step of membrane fusion. The 43 kDa growth-associated protein GAP-43 is a nerve-specific protein that is predominantly localized in the axonal growth cones and presynaptic terminal membrane. In the present study we have examined a possible interaction of GAP-43 with components involved in the exocytosis. GAP-43 was found to interact with syntaxin, SNAP-25 and VAMP in rat brain tissues and nerve growth factor-dependently differentiated PC12 cells, but not in undifferentiated PC12 cells. GAP-43 also interacted with synaptotagmin and calmodulin. These interactions of GAP-43 could be detected only when chemical cross-linking of proteins was performed before they were solubilized from the membranes with detergents, in contrast with the interaction of the synaptic core complex, which was detected without cross-linking. Experiments invitro showed that the interaction of GAP-43 with these proteins occurred Ca2+-dependently; its maximum binding with the core complex was observed at 100 μM Ca2+, whereas that of syntaxin with synaptotagmin was at 200 μM Ca2+. These values of Ca2+ concentration are close to that required for the Ca2+-dependent release of neurotransmitters. Furthermore we observed that the interaction invitro of GAP-43 with the synaptic core complex was coupled with protein kinase C-mediated phosphorylation of GAP-43. Taken together, our results suggest a novel function of GAP-43 that is involved in the Ca2+-dependent fusion of synaptic vesicles.


1990 ◽  
Vol 10 (8) ◽  
pp. 4233-4238
Author(s):  
D S Gilmour ◽  
T J Dietz ◽  
S C Elgin

A protein fraction that requires the TATA sequence to bind to the hsp70 promoter has been partially purified from nuclear extracts of Drosophila embryos. This TATA factor produces a large DNase I footprint that extends from -44 to +35 on the promoter. A mutation that changes TATA to TATG interferes both with the binding of this complex and with the transcription of the hsp70 promoter in vitro, indicating that this interaction is important for transcriptional activity. Using a highly specific protein-DNA cross-linking assay, we have identified four polypeptides that require the TATA sequence to bind to the hsp70 promoter. Polypeptides of 26 and 42 kilodaltons are in intimate contact with the TATA sequence. Polypeptides of 150 and 60 kilodaltons interact within the region from +24 to +47 in a TATA-dependent manner. Both the extended footprint and the polypeptides identified by UV cross-linking indicate that the Drosophila TATA factor is a multicomponent complex.


2012 ◽  
Vol 287 (16) ◽  
pp. 13430-13441 ◽  
Author(s):  
Stefan Zoufaly ◽  
Julia Fröbel ◽  
Patrick Rose ◽  
Tobias Flecken ◽  
Carlo Maurer ◽  
...  

ChemBioChem ◽  
2009 ◽  
Vol 10 (8) ◽  
pp. 1302-1304 ◽  
Author(s):  
Aiko Umeda ◽  
Gabrielle Nina Thibodeaux ◽  
Jie Zhu ◽  
YungAh Lee ◽  
Zhiwen Jonathan Zhang

1990 ◽  
Vol 10 (8) ◽  
pp. 4233-4238 ◽  
Author(s):  
D S Gilmour ◽  
T J Dietz ◽  
S C Elgin

A protein fraction that requires the TATA sequence to bind to the hsp70 promoter has been partially purified from nuclear extracts of Drosophila embryos. This TATA factor produces a large DNase I footprint that extends from -44 to +35 on the promoter. A mutation that changes TATA to TATG interferes both with the binding of this complex and with the transcription of the hsp70 promoter in vitro, indicating that this interaction is important for transcriptional activity. Using a highly specific protein-DNA cross-linking assay, we have identified four polypeptides that require the TATA sequence to bind to the hsp70 promoter. Polypeptides of 26 and 42 kilodaltons are in intimate contact with the TATA sequence. Polypeptides of 150 and 60 kilodaltons interact within the region from +24 to +47 in a TATA-dependent manner. Both the extended footprint and the polypeptides identified by UV cross-linking indicate that the Drosophila TATA factor is a multicomponent complex.


Blood ◽  
1997 ◽  
Vol 89 (1) ◽  
pp. 307-314 ◽  
Author(s):  
Siu K. Lo ◽  
Douglas T. Golenbock ◽  
Philip M. Sass ◽  
Azmat Maskati ◽  
Hong Xu ◽  
...  

Abstract We previously reported that monocyte adhesion to tumor necrosis factor-α (TNF-α)–treated endothelial cells increased expression of tissue factor and CD36 on monocytes. Using immunological cross-linking to mimic receptor engagement by natural ligands, we now show that CD15 (Lewis X), a monocyte counter-receptor for endothelial selectins may participate in this response. We used cytokine production as a readout for monocyte activation and found that CD15 cross-linking induced TNF-α release from peripheral blood monocytes and cells from the monocytic cell line MM6. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) showed an increase in steady-state TNF-α mRNA after 3 to 4 hours of cross-linking. CD15 cross-linking also concomitantly increased interleukin-1β (IL-1β) mRNA, while no apparent change was observed in the levels of β-actin mRNA, indicating specificity. To examine transcriptional regulation of cytokine genes by CD15 engagement, a CAT plasmid reporter construct containing IL-1β promoter/enhancer sequences was introduced into MM6. Subsequent cross-linking of CD15 increased CAT activity. CD15 engagement by monoclonal antibody also attenuated IL-1β transcript degradation, demonstrating that signaling via CD15 also had posttranscriptional effects. Nuclear extracts of anti-CD15 cross-linked cells demonstrated enhanced levels of the transcriptional factor activator protein-1, minimally changed nuclear factor-κB, and did not affect SV40 promoter specific protein-1. We conclude that engagement of CD15 on monocytes results in monocyte activation. In addition to its well-recognized adhesive role, CD15 may function as an important signaling molecule capable of initiating proinflammatory events in monocytes that come into contact with activated endothelium.


Sign in / Sign up

Export Citation Format

Share Document