Myelinating Cocultures of Rat Retinal Ganglion Cell Reaggregates and Optic Nerve Oligodendrocyte Precursor Cells

2014 ◽  
Vol 2014 (10) ◽  
pp. pdb.prot074971-pdb.prot074971
Author(s):  
T. A. Watkins ◽  
A. R. Scholze
2004 ◽  
Vol 1 (1) ◽  
pp. 73-83 ◽  
Author(s):  
LAETITIA PRESTOZ ◽  
ELLI CHATZOPOULOU ◽  
GREGORY LEMKINE ◽  
NATHALIE SPASSKY ◽  
BARBARA LEBRAS ◽  
...  

The migration of oligodendrocyte precursor cells (OPCs) is modulated by secreted molecules in their environment and by cell–cell and matrix–cell interactions. Here, we ask whether membrane-anchored guidance cues, such as the ephrin ligands and their Eph receptors, participate in the control of OPC migration in the optic nerve. We postulate that EphA and EphB receptors, which are expressed on axons of retinal ganglion cells, interact with ephrins on the surface of OPCs. We show the expression of ephrinA5, ephrinB 2 and ephrinB3 in the migrating OPCs of the optic nerve as well as in the diencephalic sites from where they originate. In addition, we demonstrate that coated EphB2-Fc receptors, which are specific for ephrinB2/B3 ligands, induce dramatic changes in the contact and migratory properties of OPCs, indicating that axonal EphB receptors activate ephrinB signaling in OPCs. Based on these findings, we propose that OPCs are characterized by an ephrin code, and that Eph–ephrin interactions between axons and OPCs control the distribution of OPCs in the optic axonal tracts, and the progress and arrest of their migration.


2017 ◽  
Vol 426 (2) ◽  
pp. 360-373 ◽  
Author(s):  
G.B. Whitworth ◽  
B.C. Misaghi ◽  
D.M. Rosenthal ◽  
E.A. Mills ◽  
D.J. Heinen ◽  
...  

2017 ◽  
Vol 162 ◽  
pp. 97-103 ◽  
Author(s):  
Zhen Puyang ◽  
Hai-Qing Gong ◽  
Shi-Gang He ◽  
John B. Troy ◽  
Xiaorong Liu ◽  
...  

2018 ◽  
Vol 59 (3) ◽  
pp. 1562 ◽  
Author(s):  
Min H. Kang ◽  
Mengchen Suo ◽  
Chandrakumar Balaratnasingam ◽  
Paula K. Yu ◽  
William H. Morgan ◽  
...  

2015 ◽  
Vol 56 (10) ◽  
pp. 6095 ◽  
Author(s):  
Francisco M. Nadal-Nicolás ◽  
Paloma Sobrado-Calvo ◽  
Manuel Jiménez-López ◽  
Manuel Vidal-Sanz ◽  
Marta Agudo-Barriuso

Author(s):  
Tian Wang ◽  
Yiming Li ◽  
Miao Guo ◽  
Xue Dong ◽  
Mengyu Liao ◽  
...  

Traumatic optic neuropathy (TON) refers to optic nerve damage caused by trauma, leading to partial or complete loss of vision. The primary treatment options, such as hormonal therapy and surgery, have limited efficacy. Pituitary adenylate cyclase-activating polypeptide 38 (PACAP38), a functional endogenous neuroprotective peptide, has emerged as a promising therapeutic agent. In this study, we used rat retinal ganglion cell (RGC) exosomes as nanosized vesicles for the delivery of PACAP38 loaded via the exosomal anchor peptide CP05 (EXOPACAP38). EXOPACAP38 showed greater uptake efficiency in vitro and in vivo than PACAP38. The results showed that EXOPACAP38 significantly enhanced the RGC survival rate and retinal nerve fiber layer thickness in a rat TON model. Moreover, EXOPACAP38 significantly promoted axon regeneration and optic nerve function after injury. These findings indicate that EXOPACAP38 can be used as a treatment option and may have therapeutic implications for patients with TON.


PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e65966 ◽  
Author(s):  
James D. Lindsey ◽  
Karen X. Duong-Polk ◽  
Yi Dai ◽  
Duy H. Nguyen ◽  
Christopher K. Leung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document