matrix cell
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 33)

H-INDEX

23
(FIVE YEARS 2)

Author(s):  
Nirupama Kotian ◽  
Katie M Troike ◽  
Kristen N Curran ◽  
Justin D Lathia ◽  
Jocelyn A McDonald

Abstract Migrating cell collectives are key to embryonic development but also contribute to invasion and metastasis of a variety of cancers. Cell collectives can invade deep into tissues, leading to tumor progression and resistance to therapies. Collective cell invasion is also observed in the lethal brain tumor glioblastoma, which infiltrates the surrounding brain parenchyma leading to tumor growth and poor patient outcomes. Drosophila border cells, which migrate as a small cell cluster in the developing ovary, are a well-studied and genetically accessible model used to identify general mechanisms that control collective cell migration within native tissue environments. Most cell collectives remain cohesive through a variety of cell-cell adhesion proteins during their migration through tissues and organs. In this study, we first identified cell adhesion, cell matrix, cell junction, and associated regulatory genes that are expressed in human brain tumors. We performed RNAi knockdown of the Drosophila orthologs in border cells to evaluate if migration and/or cohesion of the cluster was impaired. From this screen, we identified eight adhesion-related genes that disrupted border cell collective migration upon RNAi knockdown. Bioinformatics analyses further demonstrated that subsets of the orthologous genes were elevated in the margin and invasive edge of human glioblastoma patient tumors. These data together show that conserved cell adhesion and adhesion regulatory proteins with potential roles in tumor invasion also modulate collective cell migration. This dual screening approach for adhesion genes linked to glioblastoma and border cell migration thus may reveal conserved mechanisms that drive collective tumor cell invasion.


2021 ◽  
Author(s):  
Wenyang Li ◽  
Jennifer Y. Chen ◽  
Cheng Sun ◽  
Robert P. Sparks ◽  
Lorena Pantano ◽  
...  

Chronic liver injury causes fibrosis, characterized by the formation of scar tissue resulting from excessive accumulation of extracellular matrix (ECM) proteins. Hepatic stellate cell (HSC) myofibroblasts are the primary cell type responsible for liver fibrosis, yet there are currently no therapies directed at inhibiting the activity of HSC myofibroblasts. To search for potential anti-fibrotic drugs, we performed a high-throughput compound screen in primary human HSC myofibroblasts and identified 19 small molecules that induce HSC inactivation, including the polyether ionophore nanchangmycin (NCMC). NCMC induces lipid re-accumulation while reducing collagen expression, deposition of collagen in the extracellular matrix, cell proliferation, and migration. We find that NCMC increases cytosolic Ca2+ and reduces the phosphorylated protein levels of FYN, FAK, ERK1/2, HSP27 and STAT5B. Further, depletion of each of these kinases suppress COL1A1 expression. These studies reveal a signaling network triggered by NCMC to inactivate HSC myofibroblasts and reduce expression of proteins that compose the fibrotic scar. The identification of the antifibrotic effects of NCMC and the pathways by which NCMC inhibits fibrosis provides new tools and therapeutic targets to combat the development and progression of liver fibrosis.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2145
Author(s):  
Tillie Louise Hackett ◽  
Emmanuel Twumasi Osei

The lung extracellular matrix (ECM) is a complex and dynamic mixture of fibrous proteins (collagen, elastin), glycoproteins (fibronectin, laminin), glycosaminoglycans (heparin, hyaluronic acid) and proteoglycans (perlecan, versican), that are essential for normal lung development and organ health [...]


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Panagiotis Apostolakos ◽  
Eleni Giannoutsou ◽  
Basil Galatis

Abstract Background Although the cellulose microfibril organization in guard cell (GC) walls play a crucial role in the mechanism of the stomatal function, recent work showed that matrix cell wall materials are also involved. Especially in the kidney-shaped stomata of the fern Asplenium nidus, callose actively participates in the mechanism of opening and closure of the stomatal pore. Scope The present review briefly presents and discusses recent findings concerning the distribution and role of callose in the kidney-shaped stomata of the dicotyledon Vigna sinensis as well as in the dumbbell-shaped stomata of the monocotyledon Zea mays. Conclusion The discussed data support that, in both categories of angiosperm stomata, callose is implicated in the mechanism of stomatal pore formation and stomata function by locally affecting the mechanical properties of the GC cell walls.


2021 ◽  
Vol 22 (15) ◽  
pp. 8072
Author(s):  
Talita de S. Laurentino ◽  
Roseli da S. Soares ◽  
Antonio M. Lerario ◽  
Suely K. N. Marie ◽  
Sueli M. Oba-Shinjo

Lysyl oxidase-like 3 (LOXL3), belonging to the lysyl oxidase family, is responsible for the crosslinking in collagen or elastin. The cellular localization of LOXL3 is in the extracellular space by reason of its canonical function. In tumors, the presence of LOXL3 has been associated with genomic stability, cell proliferation, and metastasis. In silico analysis has shown that glioblastoma was among tumors with the highest LOXL3 expression levels. LOXL3 silencing of U87MG cells by siRNA led to the spreading of the tumor cell surface, and the transcriptome analysis of these cells revealed an upregulation of genes coding for extracellular matrix, cell adhesion, and cytoskeleton components, convergent to an increase in cell adhesion and a decrease in cell invasion observed in functional assays. Significant correlations of LOXL3 expression with genes coding for tubulins were observed in the mesenchymal subtype in the TCGA RNA-seq dataset of glioblastoma (GBM). Conversely, genes involved in endocytosis and lysosome formation, along with MAPK-binding proteins related to focal adhesion turnover, were downregulated, which may corroborate the observed decrease in cell viability and increase in the rate of cell death. Invasiveness is a major determinant of the recurrence and poor outcome of GBM patients, and downregulation of LOXL3 may contribute to halting the tumor cell invasion.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jake D. Howden ◽  
Magdalene Michael ◽  
Willow Hight-Warburton ◽  
Maddy Parsons

Abstract Background Keratinocytes form the main protective barrier in the skin to separate the underlying tissue from the external environment. In order to maintain this barrier, keratinocytes form robust junctions between neighbouring cells as well as with the underlying extracellular matrix. Cell–cell adhesions are mediated primarily through cadherin receptors, whereas the integrin family of transmembrane receptors is predominantly associated with assembly of matrix adhesions. Integrins have been shown to also localise to cell–cell adhesions, but their role at these sites remains unclear. Results Here we show that α2β1 integrins are enriched at mature keratinocyte cell–cell adhesions, where they play a crucial role in organising cytoskeletal networks to stabilize adherens junctions. Loss of α2β1 integrin has significant functional phenotypes associated with cell–cell adhesion destabilisation, including increased proliferation, reduced migration and impaired barrier function. Mechanistically, we show that α2β1 integrins suppress activity of Src and Shp2 at cell–cell adhesions leading to enhanced Cdc42–GDI interactions and stabilisation of junctions between neighbouring epithelial cells. Conclusion Our data reveals a new role for α2β1 integrins in controlling integrity of epithelial cell–cell adhesions.


Author(s):  
Chandra Kishore ◽  
Priyanka Bhadra

: Advances in the field of nanotechnology and nanomedicine have resulted in the development of novel diagnosis and potential treatment for different types of diseases, including brain cancer. Nanomaterials are smaller in size, having a higher area to volume ratio, and can be conjugated with other molecules. Nanomaterials are excellent transport vehicles that can easily cross the extracellular matrix, cell membrane, and by crossing the blood-brain barrier they can deliver the drugs to the remote and inaccessible internal parts of the brain. A nanorobot is a device that ranges in size from 0.1-10 micrometer and resembles in size to a red blood cell. Nanorobot is a smart robot that can patrol the bloodstream, recognize the specific target, and can release a tiny but deadly cargo of drugs or nanoparticles to kill the cancer cells. With the multidisciplinary approach of biotechnology, molecular biology, electronics, bioinformatics-based computer simulation, and molecular medicine, a self-sufficient nanodevice can be developed for brain tumor diagnosis and treatment. This review article discusses the current applications and future promises of nanorobots in brain cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document