scholarly journals Depth optimization of quantum search algorithms beyond Grover's algorithm

2020 ◽  
Vol 101 (3) ◽  
Author(s):  
Kun Zhang ◽  
Vladimir E. Korepin
2018 ◽  
Vol 33 (36) ◽  
pp. 1850210
Author(s):  
Aihan Yin ◽  
Zhifei Han

Multiparty quantum key agreement (MQKA) is a significant topic that the shared key must be negotiated equally by all participants. In this paper, we use Bell state as quantum resource and add controlled-not gate to avoid information leakage. There is very little research on the quantum key agreement protocol based on quantum search algorithms. Therefore, we propose a quantum key agreement protocol which is based on Grover’s algorithm as one of the most famous quantum search algorithms. The security analysis appears very promising.


2021 ◽  
Vol 20 (7) ◽  
Author(s):  
Kun Zhang ◽  
Pooja Rao ◽  
Kwangmin Yu ◽  
Hyunkyung Lim ◽  
Vladimir Korepin

2019 ◽  
Vol 21 (2) ◽  
pp. 1209-1242 ◽  
Author(s):  
Panagiotis Botsinis ◽  
Dimitrios Alanis ◽  
Zunaira Babar ◽  
Hung Viet Nguyen ◽  
Daryus Chandra ◽  
...  

Author(s):  
Tad Hogg

Phase transitions have long been studied empirically in various combinatorial searches and theoretically in simplified models [91, 264, 301, 490]. The analogy with statistical physics [397], explored throughout this volume, shows how the many local choices made during search relate to global properties such as the resulting search cost. These studies have led to a better understanding of typical search behaviors [514] and improved search methods [195, 247, 261, 432, 433]. Among the current research questions in this field are the range of algorithms exhibiting the transition behavior and the algorithm-independent problem properties associated with the difficult instances concentrated near the transition. Towards this end, the present chapter examines quantum computer [123, 126, 158, 486] algorithms for nondeterministic polynomial (NP) combinatorial search problems [191]. As with many conventional methods, they exhibit the easy-hard-easy pattern of computational cost as the degree of constraint in the problems varies. We describe how properties of the search space affect the algorithms and identify an additional structural property, the energy gap, motivated by one quantum algorithm but applicable to a variety of techniques, both quantum and classical. Thus, the study of quantum search algorithms not only extends the range of algorithms exhibiting phase transitions, but also helps identify underlying structural properties. Specifically, the next two sections describe a class of hard search problems and the form of quantum search algorithms proposed to date. The remainder of the chapter presents algorithm behaviors, relevant problem structure, arid an approximate asymptotic analysis of their cost scaling. The final section discusses various open issues in designing and evaluating quantum algorithms, and relating their behavior to problem structure. The k-satisfiability (k -SAT) problem, as discussed earlier in this volume, consists of n Boolean variables and m clauses. A clause is a logical OR of k variables, each of which may be negated. A solution is an assignment, that is, a value for each variable, TRUE or FALSE, satisfying all the clauses. An assignment is said to conflict with any clause it does not satisfy.


Author(s):  
Olga Ivancova ◽  
Nikita Ryabov ◽  
Vladimir Korenkov ◽  
Sergey Ulyanov

This article is one of a series of articles on quantum algorithms. The article discusses quantum oracle models and Grover's computational algorithm for search problems in an unstructured database.


2002 ◽  
Vol 2 (5) ◽  
pp. 399-409
Author(s):  
S.L. Braunstein ◽  
A.K. Pati

We investigate the issue of speed-up and the necessity of entanglement in Grover's quantum search algorithm. We find that in a pure state implementation of Grover's algorithm entanglement is present even though the initial and target states are product states. In pseudo-pure state implementations, the separability of the states involved defines an entanglement boundary in terms of a bound on the purity parameter. Using this bound we investigate the necessity of entanglement in quantum searching for these pseudo-pure state implementations. If every active molecule involved in the ensemble is `charged for' then in existing machines speed-up without entanglement is not possible.


Sign in / Sign up

Export Citation Format

Share Document