Rotationally induced population inversion between the B2Σu+ and X2Σg+ states of N2+ exposed to an intense laser pulse

2020 ◽  
Vol 101 (5) ◽  
Author(s):  
Youyuan Zhang ◽  
Erik Lötstedt ◽  
Kaoru Yamanouchi
2019 ◽  
Vol 205 ◽  
pp. 07010
Author(s):  
Youyuan Zhang ◽  
Erik Lotstedt ◽  
Kaoru Yamanouchi

The time-dependent population transfer process of N2+ generated in an intense laser pulse has been investigated using the quasi-stationary Floquet theory by assuming that N2+ experiences an intense laser pulse with the sudden turn-on. A light-dressed B state is formed with a significant amount of population when pulse is suddenly turned on and is adiabatically transformed to the vibrational ground state (v = 0) of the field-free B state when the pulse vanishes. In addition, a part of the population is transferred to the electronically excited A state through one-photon resonance, which also contributes to decreasing the final population in the X state, facilitating the population inversion between the B state and the X state.


2002 ◽  
Vol 88 (19) ◽  
Author(s):  
J. Fuchs ◽  
C. Labaune ◽  
H. Bandulet ◽  
P. Michel ◽  
S. Depierreux ◽  
...  

2010 ◽  
Vol 28 (2) ◽  
pp. 293-298 ◽  
Author(s):  
Wei Yu ◽  
Lihua Cao ◽  
M.Y. Yu ◽  
A.L. Lei ◽  
Z.M. Sheng ◽  
...  

AbstractIt is shown that an intense laser pulse can be focused by a conical channel. This anomalous light focusing can be attributed to a hitherto ignored effect in nonlinear optics, namely that the boundary response depends on the light intensity: the inner cone surface is ionized and the laser pulse is in turn modified by the resulting boundary plasma. The interaction creates a new self-consistently evolving light-plasma boundary, which greatly reduces reflection and enhances forward propagation of the light pulse. The hollow cone can thus be used for attaining extremely high light intensities for applications in strong-field and high energy-density physics and other areas.


2013 ◽  
Vol 222 (5) ◽  
pp. 1263-1270 ◽  
Author(s):  
J. Zhang ◽  
T. Li ◽  
J. Wang ◽  
J. Schmalian

Author(s):  
Amol Holkundkar ◽  
Felix Mackenroth

Abstract We present a novel approach to analyzing phase-space distributions of electrons ponderomotively scattered off an ultra-intense laser pulse and comment on implications for thus conceivable in-situ laser-characterization schemes. To this end, we present fully relativistic test particle simulations of electrons scattered from an ultra-intense, counter-propagating laser pulse. The simulations unveil non-trivial scalings of the scattered electron distribution with the laser intensity, pulse duration, beam waist, and energy of the electron bunch. We quantify the found scalings by means of an analytical expression for the scattering angle of an electron bunch ponderomotively scattered from a counter-propagating, ultra-intense laser pulse, also accounting for radiation reaction (RR) through the Landau-Lifshitz (LL) model. For various laser and bunch parameters, the derived formula is in excellent quantitative agreement with the simulations. We also demonstrate how in the radiation-dominated regime a simple re-scaling of our model's input parameter yields quantitative agreement with numerical simulations based on the LL model.


2018 ◽  
Author(s):  
Bertrand Aubert ◽  
David Hebert ◽  
Jean-Luc Rullier ◽  
Emilien Lescoute ◽  
Laurent Videau ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document