scholarly journals Radiation signal accompanying the Schwinger effect

2021 ◽  
Vol 103 (5) ◽  
Author(s):  
I. A. Aleksandrov ◽  
A. D. Panferov ◽  
S. A. Smolyansky
Keyword(s):  
2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Valerie Domcke ◽  
Yohei Ema ◽  
Kyohei Mukaida

Abstract We point out an enhancement of the pair production rate of charged fermions in a strong electric field in the presence of time dependent classical axion-like background field, which we call axion assisted Schwinger effect. While the standard Schwinger production rate is proportional to $$ \exp \left(-\pi \left({m}^2+{p}_T^2\right)/E\right) $$ exp − π m 2 + p T 2 / E , with m and pT denoting the fermion mass and its momentum transverse to the electric field E, the axion assisted Schwinger effect can be enhanced at large momenta to exp(−πm2/E). The origin of this enhancement is a coupling between the fermion spin and its momentum, induced by the axion velocity. As a non-trivial validation of our result, we show its invariance under field redefinitions associated with a chiral rotation and successfully reproduce the chiral anomaly equation in the presence of helical electric and magnetic fields. We comment on implications of this result for axion cosmology, focussing on axion inflation and axion dark matter detection.


2016 ◽  
Vol 94 (8) ◽  
Author(s):  
Christian Schneider ◽  
Ralf Schützhold
Keyword(s):  

2021 ◽  
Vol 103 (12) ◽  
Author(s):  
Prasant Samantray ◽  
Suprit Singh

2018 ◽  
Vol 33 (25) ◽  
pp. 1850144
Author(s):  
Maryam Gholizadeh Arashti ◽  
Majid Dehghani

The Schwinger effect in the presence of instantons and background magnetic field was considered to study the dependence of critical electric field on instanton density and magnetic field using AdS/CFT conjecture. The gravity side is the near horizon limit of D3[Formula: see text]D(−[Formula: see text]1) background with electric and magnetic fields on the brane. Our approach is based on the potential analysis for particle–antiparticle pair at zero and finite temperatures, where the zero temperature case is a semi-confining theory. We find that presence of instantons suppresses the pair creation effect, similar to a background magnetic field. Then, the production rate will be obtained numerically using the expectation value of circular Wilson loop. The obtained production rate in a magnetic field is in agreement with previous results.


2017 ◽  
Vol 32 (10) ◽  
pp. 1750045 ◽  
Author(s):  
J. Sadeghi ◽  
B. Pourhassan ◽  
S. Tahery ◽  
F. Razavi

In this paper, we consider a deformed AdS background and study the effect of deformation parameter on the pair production rate of the Schwinger effect. The electrostatic potential is important for the pair production in the holographic Schwinger effect. In this paper, we analyze the electrostatic potential in a deformed AdS background and investigate the effect of deformation parameter which may be useful to test the AdS/QCD. In the case of zero temperature, we find that the larger value of the deformation parameter leads to a smaller value of separation length of the test particles on the probe. Also, we find a finite maximum of separation length in the presence of modification parameter.


2019 ◽  
Vol 2019 (2) ◽  
Author(s):  
K. D. Lozanov ◽  
A. Maleknejad ◽  
E. Komatsu
Keyword(s):  

2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Wenhe Cai ◽  
Kang-le Li ◽  
Si-wen Li

Abstract Using the Witten–Sakai–Sugimoto model in the D0–D4 background, we holographically compute the vacuum decay rate of the Schwinger effect in this model. Our calculation contains the influence of the D0-brane density which could be identified as the $$\theta $$θ angle or chiral potential in QCD. Under the strong electromagnetic fields, the instability appears due to the creation of quark–antiquark pairs and the associated decay rate can be obtained by evaluating the imaginary part of the effective Euler–Heisenberg action which is identified as the action of the probe brane with a constant electromagnetic field. In the bubble D0–D4 configuration, we find the decay rate decreases when the $$\theta $$θ angle increases since the vacuum becomes heavier in the present of the glue condensate in this system. And the decay rate matches to the result in the black D0–D4 configuration at zero temperature limit according to our calculations. In this sense, the Hawking–Page transition of this model could be consistently interpreted as the confined/deconfined phase transition. Additionally there is another instability from the D0-brane itself in this system and we suggest that this instability reflects to the vacuum decay triggered by the $$\theta $$θ angle as it is known in the $$\theta $$θ-dependent QCD.


2020 ◽  
Vol 37 (11) ◽  
pp. 115003
Author(s):  
Shu-Min Wu ◽  
Hao-Sheng Zeng

2019 ◽  
Vol 21 (8) ◽  
pp. 083035
Author(s):  
A M Piñeiro ◽  
D Genkina ◽  
Mingwu Lu ◽  
I B Spielman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document