scholarly journals Axion assisted Schwinger effect

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Valerie Domcke ◽  
Yohei Ema ◽  
Kyohei Mukaida

Abstract We point out an enhancement of the pair production rate of charged fermions in a strong electric field in the presence of time dependent classical axion-like background field, which we call axion assisted Schwinger effect. While the standard Schwinger production rate is proportional to $$ \exp \left(-\pi \left({m}^2+{p}_T^2\right)/E\right) $$ exp − π m 2 + p T 2 / E , with m and pT denoting the fermion mass and its momentum transverse to the electric field E, the axion assisted Schwinger effect can be enhanced at large momenta to exp(−πm2/E). The origin of this enhancement is a coupling between the fermion spin and its momentum, induced by the axion velocity. As a non-trivial validation of our result, we show its invariance under field redefinitions associated with a chiral rotation and successfully reproduce the chiral anomaly equation in the presence of helical electric and magnetic fields. We comment on implications of this result for axion cosmology, focussing on axion inflation and axion dark matter detection.

2018 ◽  
Vol 33 (25) ◽  
pp. 1850144
Author(s):  
Maryam Gholizadeh Arashti ◽  
Majid Dehghani

The Schwinger effect in the presence of instantons and background magnetic field was considered to study the dependence of critical electric field on instanton density and magnetic field using AdS/CFT conjecture. The gravity side is the near horizon limit of D3[Formula: see text]D(−[Formula: see text]1) background with electric and magnetic fields on the brane. Our approach is based on the potential analysis for particle–antiparticle pair at zero and finite temperatures, where the zero temperature case is a semi-confining theory. We find that presence of instantons suppresses the pair creation effect, similar to a background magnetic field. Then, the production rate will be obtained numerically using the expectation value of circular Wilson loop. The obtained production rate in a magnetic field is in agreement with previous results.


2018 ◽  
Vol 168 ◽  
pp. 03002 ◽  
Author(s):  
Ehsan Bavarsad ◽  
Sang Pyo Kim ◽  
Clément Stahl ◽  
She-Sheng Xue

We investigate Schwinger scalar pair production in a constant electromagnetic field in de Sitter (dS) spacetime. We obtain the pair production rate, which agrees with the Hawking radiation in the limit of zero electric field in dS. The result describes how a cosmic magnetic field affects the pair production rate. In addition, using a numerical method we study the effect of the magnetic field on the induced current. We find that in the strong electromagnetic field the current has a linear response to the electric and magnetic fields, while in the infrared regime, is inversely proportional to the electric field and leads to infrared hyperconductivity.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Udit Narayan Chowdhury

We consider the phenomenon of spontaneous pair production in the presence of an external electric field for noncommutative Yang-Mills theories. Using Maldacena’s holographic conjecture, the threshold electric field for pair production is computed from the quark/antiquark potential for noncommutative theories. As an effect of noncommutativity, the threshold electric field is seen to be smaller than its commutative counterpart. We also estimate the correction to the production rate of quark/antiquark pairs to the first order of the noncommutative deformation parameter. Our result bears resemblance with an earlier related work (based on field-theoretic methods).


2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Julia Hannukainen ◽  
Alberto Cortijo ◽  
Jens H Bardarson ◽  
Yago Ferreiros

We show how the axial (chiral) anomaly induces a spin torque on the magnetization in magnetic Weyl semimetals. The anomaly produces an imbalance in left- and right-handed chirality carriers when non-orthogonal electric and magnetic fields are applied. Such imbalance generates a spin density which exerts a torque on the magnetization, the strength of which can be controlled by the intensity of the applied electric field. We show how this results in an electric control of the chirality of domain walls, as well as in an improvement of the domain wall dynamics, by delaying the onset of the Walker breakdown. The measurement of the electric field mediated changes in the domain wall chirality would constitute a direct proof of the axial anomaly. Additionally, we show how quantum fluctuations of electronic Fermi arc states bound to the domain wall naturally induce an effective magnetic anisotropy, allowing for high domain wall velocities even if the intrinsic anisotropy of the magnetic Weyl semimetal is small.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Jin Young Kim

AbstractWe study the propagation of light under a strong electric field in Born–Infeld electrodynamics. The nonlinear effect can be described by the effective indices of refraction. Because the effective indices of refraction depend on the background electric field, the path of light can be bent when the background field is non-uniform. We compute the bending angle of light by a Born–Infeld-type Coulomb charge in the weak lensing limit using the trajectory equation based on geometric optics. We also compute the deflection angle of light by the Einstein–Born–Infeld black hole using the geodesic equation and confirm that the contribution of the electric charge to the total bending angle agree.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Zi-qiang Zhang ◽  
De-fu Hou ◽  
Yan Wu ◽  
Gang Chen

Using the AdS/CFT correspondence, we investigate the Schwinger effect in a confining D3-brane background with chemical potential. The potential between a test particle pair on the D3-brane in an external electric field is obtained. The critical fieldEcin this case is calculated. Also, we apply numerical method to evaluate the production rate for various cases. The results imply that the presence of chemical potential tends to suppress the pair production effect.


2010 ◽  
Vol 25 (22) ◽  
pp. 4301-4310
Author(s):  
A. JAHAN ◽  
D. KAMANI

We study the Schwinger effect in a system of nonparallel D1-branes for the bosonic strings using the path integral formalism. We drive the string pair creation rate by calculating the one-loop vacuum amplitude of the setup in presence of the background electric field defined along one of the D1-branes. We find an angle dependent minimum value for the background field and show that the decaying of vacuum into string pairs takes place for the field above this value. It is shown that in [Formula: see text] limit the vacuum becomes stable and thus no pair creation occurs.


1993 ◽  
Vol 08 (04) ◽  
pp. 705-721
Author(s):  
M. RAVENDRANADHAN ◽  
M. SABIR

Ground state charge of some fermion soliton system without C-invariance is calculated in 1+1 and 3+1 dimensions by a combination of adiabatic method and spectral flow analysis. Induced charge is calculated by evolving adiabatically the fields from a vacuum having a background field which has a zero energy state and spectral symmetry. The spectral flow is calculated by an analysis of the bound state spectrum. In 1+1 dimension our calculations are in agreement with the results already found in the literature. In 3+1 dimension we study the interaction of fermions with monopoles and dyons. In the case of monopoles, even though there is spectral asymmetry, ground state charge is found to be ±1/2. It is shown that ground state charge gets contribution only from the lowest angular momentum states and is discontinuous at the fermion mass.


Sign in / Sign up

Export Citation Format

Share Document