Exact solutions of the Schrödinger equation for some quantum-mechanical many-body systems

1993 ◽  
Vol 47 (1) ◽  
pp. 71-77 ◽  
Author(s):  
Ruiqin Zhang ◽  
Conghao Deng
1997 ◽  
Vol 08 (04) ◽  
pp. 705-716 ◽  
Author(s):  
Bruce M. Boghosian ◽  
Washington Taylor

A general class of discrete unitary models are described whose behavior in the continuum limit corresponds to a many-body Schrödinger equation. On a quantum computer, these models could be used to simulate quantum many-body systems with an exponential speedup over analogous simulations on classical computers. On a classical computer, these models give an explicitly unitary and local prescription for discretizing the Schrödinger equation. It is shown that models of this type can be constructed for an arbitrary number of particles moving in an arbitrary number of dimensions with an arbitrary interparticle interaction.


2020 ◽  
Vol 35 (06) ◽  
pp. 2050033
Author(s):  
R. G. G. Amorim ◽  
M. C. B. Fernandes ◽  
F. C. Khanna ◽  
A. E. Santana ◽  
J. D. M. Vianna

Using elements of symmetry, as gauge invariance, many aspects of a Schrödinger equation in phase space are analyzed. The number (Fock space) representation is constructed in phase space and the Green function, directly associated with the Wigner function, is introduced as a basic element of perturbative procedure. This phase space representation is applied to the Landau problem and the Liouville potential.


Author(s):  
Gaukhar Shaikhova ◽  
Arailym Syzdykova ◽  
Samgar Daulet

In this work, the generalized nonlinear Schrodinger equation is investigated. Exact solutions are derived by the sinecosine method. This method is used to obtain the exact solutions for different types of nonlinear partial differential equations. Graphs of obtained solutions are presented. The obtained solutions are found to be important for the explanation of some practical physical problems.


Sign in / Sign up

Export Citation Format

Share Document