Hidden crossings and the separation constant of a hydrogenlike atom in spheroidal coordinates

1995 ◽  
Vol 51 (3) ◽  
pp. 2630-2633 ◽  
Author(s):  
T. P. Grozdanov ◽  
E. A. Solov’ev
1962 ◽  
Vol 52 (3) ◽  
pp. 469-484 ◽  
Author(s):  
Tatsuo Usami ◽  
Yasuo Satô

abstract There are several causes for the observations of splitting of the spectral peaks determined from the free oscillation of the earth. In this paper, the splitting due to the ellipticity is studied assuming a homogeneous earth described by oblate spheroidal coordinates. Ellipticity causes the iTn mode to split into (n + 1) modes, while the earth's rotation causes it to split into (2n + 1) modes. 1/297.0 is adopted as the ellipticity of the earth. Numerical calculations are carried out for the fundamental mode (n = 2, 3, 4) and for the first higher harmonics (n = 1). The difference between the extreme frequencies for each value of n is 0.7% (n = 2), 0.5% (n = 3), and 0.4% (n = 4).


2019 ◽  
Vol 391 ◽  
pp. 233-238
Author(s):  
E. Gomes da Silva ◽  
E. Santana de Lima ◽  
W.M. Paiva Barbosa de Lima ◽  
A.G. Barbosa de Lima ◽  
J.J. Silva Nascimento ◽  
...  

This paper focuses some fundamental aspects of combined convective and microwave drying of prolate spheroidal solids. A transient mathematical modeling based on the diffusion theory (mass and heat balance equations) written in prolate spheroidal coordinates was derived and the importance of this procedure on the analysis of the drying process of wet porous solid, is also presented. Results pointed to the behavior of the moisture migration and heating of the solid with different aspect ratio. Solids with higher area/volume relationships dry and heat faster.


Author(s):  
Ruixian Cai ◽  
Na Zhang

The analytical solutions of unsteady heat conduction with variable thermal properties (thermal conductivity, density and specific heat are functions of temperature or coordinates) are meaningful in theory. In addition, they are very useful to the computational heat conduction to check the numerical solutions and to develop numerical schemes, grid generation methods and so forth. Such solutions in rectangular coordinates have been derived by the authors; some other solutions for unsteady point symmetrical heat conduction in spherical coordinates are given in this paper to promote the heat conduction theory and to develop the relative computational heat conduction.


Sign in / Sign up

Export Citation Format

Share Document