scholarly journals Determination of the lowest-energy structure ofAg8from first-principles calculations

2005 ◽  
Vol 72 (4) ◽  
Author(s):  
M. Pereiro ◽  
D. Baldomir
2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Matteo Rinaldi ◽  
Matous Mrovec ◽  
Manfred Fähnle ◽  
Ralf Drautz

2006 ◽  
Vol 980 ◽  
Author(s):  
Maja Krcmar ◽  
Chong Long Fu ◽  
James R. Morris

AbstractUsing the first-principles calculations, we find that Fe-Co has a tendency for a structural transformation to a lower symmetry sheared L10 phase under the applied shear stresses. This tendency for structural transformation can have a significant influence on the mechanical properties of FeCo, as it might be closely connected with the intrinsic brittleness of Fe-rich and stoichiometric FeCo alloys and with the improved ductility of Co-rich FeCo alloys. We suggest that improved ductility in Co-rich FeCo alloys may originate from transformation toughening due to the B2→L10 structural transformation near the regions of high stress concentration, as the stress energy is fully dissipated by the decrease in the electronic energy due to the structural phase transformation into a lower energy structure. Similarly, in ZrCo, our first-principles calculations find that a B2→B33 martensitic phase transformation can occur under the applied shear stress, which may contribute to the good ductility of this alloy, despite the fact that ZrCo is a strongly ordered line compound.


Sign in / Sign up

Export Citation Format

Share Document