scholarly journals Nonperturbative dynamical many-body theory of a Bose-Einstein condensate

2005 ◽  
Vol 72 (6) ◽  
Author(s):  
Thomas Gasenzer ◽  
Jürgen Berges ◽  
Michael G. Schmidt ◽  
Marcos Seco
2021 ◽  
Vol 240 (1) ◽  
pp. 383-417
Author(s):  
Nikolai Leopold ◽  
David Mitrouskas ◽  
Robert Seiringer

AbstractWe consider the Fröhlich Hamiltonian in a mean-field limit where many bosonic particles weakly couple to the quantized phonon field. For large particle numbers and a suitably small coupling, we show that the dynamics of the system is approximately described by the Landau–Pekar equations. These describe a Bose–Einstein condensate interacting with a classical polarization field, whose dynamics is effected by the condensate, i.e., the back-reaction of the phonons that are created by the particles during the time evolution is of leading order.


Atoms ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 18
Author(s):  
Hiroyuki Tajima ◽  
Junichi Takahashi ◽  
Simeon Mistakidis ◽  
Eiji Nakano ◽  
Kei Iida

The notion of a polaron, originally introduced in the context of electrons in ionic lattices, helps us to understand how a quantum impurity behaves when being immersed in and interacting with a many-body background. We discuss the impact of the impurities on the medium particles by considering feedback effects from polarons that can be realized in ultracold quantum gas experiments. In particular, we exemplify the modifications of the medium in the presence of either Fermi or Bose polarons. Regarding Fermi polarons we present a corresponding many-body diagrammatic approach operating at finite temperatures and discuss how mediated two- and three-body interactions are implemented within this framework. Utilizing this approach, we analyze the behavior of the spectral function of Fermi polarons at finite temperature by varying impurity-medium interactions as well as spatial dimensions from three to one. Interestingly, we reveal that the spectral function of the medium atoms could be a useful quantity for analyzing the transition/crossover from attractive polarons to molecules in three-dimensions. As for the Bose polaron, we showcase the depletion of the background Bose-Einstein condensate in the vicinity of the impurity atom. Such spatial modulations would be important for future investigations regarding the quantification of interpolaron correlations in Bose polaron problems.


2016 ◽  
Vol 71 (10) ◽  
pp. 875-881 ◽  
Author(s):  
Christoph Heinisch ◽  
Martin Holthaus

AbstractWe suggest to subject anharmonically trapped Bose–Einstein condensates to sinusoidal forcing with a smooth, slowly changing envelope, and to measure the coherence of the system after such pulses. In a series of measurements with successively increased maximum forcing strength, one then expects an adiabatic return of the condensate to its initial state as long as the pulses remain sufficiently weak. In contrast, once the maximum driving amplitude exceeds a certain critical value there should be a drastic loss of coherence, reflecting significant heating induced by the pulse. This predicted experimental signature is traced to the loss of an effective adiabatic invariant, and to the ensuing breakdown of adiabatic motion of the system’s Floquet state when the many-body dynamics become chaotic. Our scenario is illustrated with the help of a two-site model of a forced bosonic Josephson junction, but should also hold for other, experimentally accessible configurations.


2018 ◽  
Vol 98 (1) ◽  
Author(s):  
G. C. Katsimiga ◽  
S. I. Mistakidis ◽  
G. M. Koutentakis ◽  
P. G. Kevrekidis ◽  
P. Schmelcher

2018 ◽  
Vol 32 (31) ◽  
pp. 1850345
Author(s):  
Qun Wang ◽  
Bo Xiong

We investigate the low-energy excitations of a dilute atomic Bose gas confined in a anharmonic trap interacting with repulsive forces. The dispersion law of both surface and compression modes is derived and analyzed for large numbers of atoms in the trap, which show two branches of excitation and appear two critical values, where one of them indicates collective excitation which would be unstable dynamically, and the other one indicates the existing collective mode with lower frequency under anharmonic influence than that in harmonic trapping case. Our work reveals the key role played by the anharmonicity and interatomic forces which introduce a rich structure in the dynamic behavior of these new many-body systems.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Grigory E. Astrakharchik ◽  
Luis A. Peña Ardila ◽  
Richard Schmidt ◽  
Krzysztof Jachymski ◽  
Antonio Negretti

AbstractThe presence of strong interactions in a many-body quantum system can lead to a variety of exotic effects. Here we show that even in a comparatively simple setup consisting of a charged impurity in a weakly interacting bosonic medium the competition of length scales gives rise to a highly correlated mesoscopic state. Using quantum Monte Carlo simulations, we unravel its vastly different polaronic properties compared to neutral quantum impurities. Moreover, we identify a transition between the regime amenable to conventional perturbative treatment in the limit of weak atom-ion interactions and a many-body bound state with vanishing quasi-particle residue composed of hundreds of atoms. In order to analyze the structure of the corresponding states, we examine the atom-ion and atom-atom correlation functions which both show nontrivial properties. Our findings are directly relevant to experiments using hybrid atom-ion setups that have recently attained the ultracold regime.


Sign in / Sign up

Export Citation Format

Share Document