scholarly journals Ground-state properties, vortices, and collective excitations in a two-dimensional Bose-Einstein condensate with gravitylike interatomic attraction

2008 ◽  
Vol 77 (5) ◽  
Author(s):  
A. Keleş ◽  
S. Sevinçli ◽  
B. Tanatar
2010 ◽  
Vol 161 (3-4) ◽  
pp. 334-347 ◽  
Author(s):  
Chen Liang ◽  
Kong Wei ◽  
B. J. Ye ◽  
H. M. Wen ◽  
X. Y. Zhou ◽  
...  

2016 ◽  
Vol 30 (22) ◽  
pp. 1650307 ◽  
Author(s):  
Elías Castellanos

We analyze the corrections caused by finite size effects upon the ground state properties of a homogeneous one-dimensional (1D) Bose–Einstein condensate. We assume from the very beginning that the Bogoliubov’s formalism is valid and consequently, we show that in order to obtain a well-defined ground state properties, finite size effects of the system must be taken into account. Indeed, the formalism described in the present paper allows to recover the usual properties related to the ground state of a homogeneous 1D Bose–Einstein condensate but corrected by finite size effects of the system. Finally, this scenario allows us to analyze the sensitivity of the system when the Bogoliubov’s regime is valid and when finite size effects are present. These facts open the possibility to apply these ideas to more realistic scenarios, e.g. low-dimensional trapped Bose–Einstein condensates.


Sign in / Sign up

Export Citation Format

Share Document