Dynamics and Ground State Properties of Two-component Bose-Einstein Condensate in Different Hyperfine States

2010 ◽  
Vol 161 (3-4) ◽  
pp. 334-347 ◽  
Author(s):  
Chen Liang ◽  
Kong Wei ◽  
B. J. Ye ◽  
H. M. Wen ◽  
X. Y. Zhou ◽  
...  
2020 ◽  
Vol 35 (26) ◽  
pp. 2050227 ◽  
Author(s):  
Gennady P. Berman ◽  
Vyacheslav N. Gorshkov ◽  
Vladimir I. Tsifrinovich ◽  
Marco Merkli ◽  
Vladimir V. Tereshchuk

We consider a two-component dark matter halo (DMH) of a galaxy containing ultra-light axions (ULA) of different mass. The DMH is described as a Bose–Einstein condensate (BEC) in its ground state. In the mean-field (MF) limit, we have derived the integro-differential equations for the spherically symmetrical wave functions of the two DMH components. We studied, numerically, the radial distribution of the mass density of ULA and constructed the parameters which could be used to distinguish between the two- and one-component DMH. We also discuss an interesting connection between the BEC ground state of a one-component DMH and Black Hole temperature and entropy, and Unruh temperature.


2016 ◽  
Vol 30 (22) ◽  
pp. 1650307 ◽  
Author(s):  
Elías Castellanos

We analyze the corrections caused by finite size effects upon the ground state properties of a homogeneous one-dimensional (1D) Bose–Einstein condensate. We assume from the very beginning that the Bogoliubov’s formalism is valid and consequently, we show that in order to obtain a well-defined ground state properties, finite size effects of the system must be taken into account. Indeed, the formalism described in the present paper allows to recover the usual properties related to the ground state of a homogeneous 1D Bose–Einstein condensate but corrected by finite size effects of the system. Finally, this scenario allows us to analyze the sensitivity of the system when the Bogoliubov’s regime is valid and when finite size effects are present. These facts open the possibility to apply these ideas to more realistic scenarios, e.g. low-dimensional trapped Bose–Einstein condensates.


2012 ◽  
Vol 2 (1) ◽  
Author(s):  
P. Nowik-Boltyk ◽  
O. Dzyapko ◽  
V. E. Demidov ◽  
N. G. Berloff ◽  
S. O. Demokritov

2015 ◽  
Vol 64 (6) ◽  
pp. 060302
Author(s):  
Zhang Xiao-Fei ◽  
Zhang Pei ◽  
Chen Guang-Ping ◽  
Dong Biao ◽  
Tan Ren-Bing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document