scholarly journals High-quality positron acceleration in beam-driven plasma accelerators

Author(s):  
S. Diederichs ◽  
C. Benedetti ◽  
E. Esarey ◽  
J. Osterhoff ◽  
C. B. Schroeder
2006 ◽  
Vol 24 (2) ◽  
pp. 255-259 ◽  
Author(s):  
A.F. LIFSCHITZ ◽  
J. FAURE ◽  
Y. GLINEC ◽  
V. MALKA ◽  
P. MORA

The design of a two-stage compact GeV electron accelerator is presented. The accelerator is as follows: (1) an ultra-short electron bunch is produced in a state-of-the-art laser-plasma accelerator (injector stage), (2) it is injected into an accelerating stage consisting of a centimeter length low density plasma interacting with a petawatt laser pulse. The parameters for the injector are taken from recent experimental results showing that high quality, ultra-short, and quasi-monoenergetic electron beams are now being produced in laser-plasma accelerators. Simulations performed with WAKE show that this method can lead to the production of high quality, monoenergetic, and sub-50 fs electron bunches at the GeV energy level.


2013 ◽  
Vol 111 (24) ◽  
Author(s):  
A. Martinez de la Ossa ◽  
J. Grebenyuk ◽  
T. Mehrling ◽  
L. Schaper ◽  
J. Osterhoff

Author(s):  
E. Cormier-Michel ◽  
V. H. Ranjbar ◽  
D. L. Bruhwiler ◽  
J. R. Cary ◽  
M. Chen ◽  
...  

2005 ◽  
Vol 12 (5) ◽  
pp. 056709 ◽  
Author(s):  
C. G. R. Geddes ◽  
Cs. Tóth ◽  
J. van Tilborg ◽  
E. Esarey ◽  
C. B. Schroeder ◽  
...  

1966 ◽  
Vol 24 ◽  
pp. 51-52
Author(s):  
E. K. Kharadze ◽  
R. A. Bartaya

The unique 70-cm meniscus-type telescope of the Abastumani Astrophysical Observatory supplied with two objective prisms and the seeing conditions characteristic at Mount Kanobili (Abastumani) permit us to obtain stellar spectra of a high quality. No additional design to improve the “climate” immediately around the telescope itself is being applied. The dispersions and photographic magnitude limits are 160 and 660Å/mm, and 12–13, respectively. The short-wave end of spectra reaches 3500–3400Å.


Author(s):  
R. L. Lyles ◽  
S. J. Rothman ◽  
W. Jäger

Standard techniques of electropolishing silver and silver alloys for electron microscopy in most instances have relied on various CN recipes. These methods have been characteristically unsatisfactory due to difficulties in obtaining large electron transparent areas, reproducible results, adequate solution lifetimes, and contamination free sample surfaces. In addition, there are the inherent health hazards associated with the use of CN solutions. Various attempts to develop noncyanic methods of electropolishing specimens for electron microscopy have not been successful in that the specimen quality problems encountered with the CN solutions have also existed in the previously proposed non-cyanic methods.The technique we describe allows us to jet polish high quality silver and silver alloy microscope specimens with consistant reproducibility and without the use of CN salts.The solution is similar to that suggested by Myschoyaev et al. It consists, in order of mixing, 115ml glacial actic acid (CH3CO2H, specific wt 1.04 g/ml), 43ml sulphuric acid (H2SO4, specific wt. g/ml), 350 ml anhydrous methyl alcohol, and 77 g thiourea (NH2CSNH2).


Author(s):  
A. V. Crewe ◽  
J. Wall ◽  
L. M. Welter

A scanning microscope using a field emission source has been described elsewhere. This microscope has now been improved by replacing the single magnetic lens with a high quality lens of the type described by Ruska. This lens has a focal length of 1 mm and a spherical aberration coefficient of 0.5 mm. The final spot size, and therefore the microscope resolution, is limited by the aberration of this lens to about 6 Å.The lens has been constructed very carefully, maintaining a tolerance of + 1 μ on all critical surfaces. The gun is prealigned on the lens to form a compact unit. The only mechanical adjustments are those which control the specimen and the tip positions. The microscope can be used in two modes. With the lens off and the gun focused on the specimen, the resolution is 250 Å over an undistorted field of view of 2 mm. With the lens on,the resolution is 20 Å or better over a field of view of 40 microns. The magnification can be accurately varied by attenuating the raster current.


Sign in / Sign up

Export Citation Format

Share Document