silver alloys
Recently Published Documents


TOTAL DOCUMENTS

420
(FIVE YEARS 23)

H-INDEX

33
(FIVE YEARS 3)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 421
Author(s):  
Salome Hagelstein ◽  
Sergej Zankovic ◽  
Adalbert Kovacs ◽  
Roland Barkhoff ◽  
Michael Seidenstuecker

Zinc alloys have recently been researched intensely for their great properties as bioabsorbable implants for osteosynthesis. Pure zinc (Zn) itself has relatively poor strength, which makes it insufficient for most clinical use. Research has already proven that the mechanical strength of zinc can be enhanced significantly by alloying it with silver. This study evaluated zinc silver alloys (ZnAg) as well as novel zinc silver titanium alloys (ZnAgTi) regarding their mechanical properties for the use as bioabsorbable implants. Compared to pure zinc the mechanical strength was enhanced significantly for all tested zinc alloys. The elastic properties were only enhanced significantly for the zinc silver alloys ZnAg6 and ZnAg9. Regarding target values for orthopedic implants proposed in literature, the best mechanical properties were measured for the ZnAg3Ti1 alloy with an ultimate tensile strength of 262 MPa and an elongation at fracture of 16%. Besides the mechanical properties, the corrosion rates are important for bioabsorbable implants. This study tested the corrosion rates of zinc alloys in PBS solution (phosphate buffered solution) with electrochemical corrosion measurement. Zinc and its alloys showed favorable corrosion rates, especially in comparison to magnesium, which has a much lower degradation rate and no buildup of hydrogen gas pockets during the process. Altogether, this makes zinc alloys highly favorable for use as material for bioabsorbable implants for osteosynthesis.


2021 ◽  
Vol 12 (6) ◽  
pp. 1615-1622
Author(s):  
S. A. Tyurina ◽  
S. L. Chavushyan ◽  
A. V. Makarova ◽  
R. E. Khvostov ◽  
G. A. Yudin
Keyword(s):  

2021 ◽  
Vol 5 (12(113)) ◽  
pp. 47-59
Author(s):  
Tatyana Artyukh ◽  
Inna Hryhorenko ◽  
Alla Ternova ◽  
Svitlana Yaheliuk ◽  
Oleksii Verenikin ◽  
...  

The procedure for the identification of white jewelry alloys based on precious metals, in particular, silver, platinum and platinum group metals with different contents of alloying components, by testing on an assay stone and by the method of X-ray fluorescence analysis has been considered. The methodology for assessing the compliance of silver and platinum fineness in white jewelry alloys of different component composition with the requirements of regulatory documents and the procedure for their identification has been improved. It has been established that the silver fineness in precious alloys of the AgCu, AgZnCu system, determined using the potassium dichromate reagent on the test stone, depends on the manifestation of the contrast of the qualitative reaction from the standard sample (assay needle). It has been proven that for testing silver alloys containing palladium, the "Acid reagent for gold 750" is effective, which works to determine the qualitative and approximate content of silver in alloys. It was determined that the reagent "Ferrous-cyanide potassium" is very sensitive to changes in the alloy composition of silver alloys and makes it possible to establish the silver content with an accuracy of 5 %. The presence in silver alloys of such impurities as zinc, cadmium, nickel, gold, palladium and others increases the error in determining the fineness of silver and forms a different color and shade. It has been proven that testing of silver alloys on an assay stone with silver nitrate is effective only for the СрМ system. The presence of zinc in 925 sterling silver alloys visually increases the color intensity of the sediment, which indicates a higher overestimated fineness. It has been found that the identification of the content of precious alloys based on platinum for the presence of ligature components is carried out with a potassium iodide reagent at t=120 °C by the color and shade of the sediment. The procedure for using potassium iodide during testing of precious platinum-based alloys has been optimized


2021 ◽  
Vol MA2021-02 (4) ◽  
pp. 513-513
Author(s):  
Helen Engelhardt ◽  
Oles Sendetskyi ◽  
Michael Fleischauer

2021 ◽  
Vol 26 ◽  
pp. 101444
Author(s):  
Rachida M'chaar ◽  
Noureddine Ouerfelli ◽  
Mehrzia Krimi Ammar ◽  
Baraa Hafez ◽  
Man Singh ◽  
...  

Heritage ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 2287-2319 ◽  
Author(s):  
Omid Oudbashi ◽  
Russell Wanhill

The manifestations of ancient metals’ embrittlement, cracking and fracture, are challenging problems for restorers and conservators, yet the scientific understanding of these problems is limited. In particular, the study and interpretation of fracture surfaces, fractography, is a minor or non-existent consideration for most archaeometallurgical investigations. This paper presents a survey of fractographic analyses, in combination with the more widely used disciplines of microstructural studies, metallography, and chemical analyses for some Old-World copper alloy (bronzes) and high-silver alloy artifacts that have undergone long-term corrosion and embrittlement damage. We show that fractography, as an adjunct to metallography, can improve the interpretation of these types of damage and assist in selecting the best methods for restoration and conservation of the objects made from these alloys.


2021 ◽  
Author(s):  
Hiago Maurilio Lopes Carvalho ◽  
Mariama Rebello Sousa Dias ◽  
Anibal Thiago Bezerra

Abstract Gold and silver alloys enable novel opportunities for engineering materials with distinct optical responses. Here we investigate the optical properties of gold and silver (Ag x Au 1−x) structures using First-Principle Density Functional Theory (DFT) for gold concentrations varying from 0% up to 100% with steps of 25%. Results of the optical permittivity are analyzed with the independent particle approximation and compared with previously reported theoretical and experimental works. The pure systems and the ones with unbalanced concentrations exhibit isotropic optical responses. The Ag 0.50 Au 0.50 shows an anisotropic response among the y-direction and the xz-direction, mainly in the intraband transition energy range. The anisotropy is elucidated in terms of the d-orbitals density of states and the charge distribution with the structure. The anisotropic optical response can be the origin of the discrepancies among reported experimental results for structures with the same stoichiometry.


2021 ◽  
Author(s):  
A. A. Kalinin ◽  
◽  
Ye. E. Savchenko ◽  
V. Yu. Prokofiev ◽  
◽  
...  

Data on geology of the Oleninskoe deposit, and results of mineralogical and geochemical investigations of ores and altered rocks are presented. Mineralization is connected with granite porphyry sills, an end member of gabbrodiorite-diorite-granodiorite complex of minor intrusions. The main alteration processes are diopsidization and biotitization, formation of quartz-muscovite-albite, quartz-aresenopyrite-tourmaline, and quartz metasomatic rocks. More than 50 ore minerals (sulfides, sulfosalts, tellurides, and native metals) were identified in the ore, including 20 minerals of silver and gold. Mineral associations in the ore and sequence of mineral formation are defined. Five generations of gold-silver alloys are identified, its composition covers spectrum from native silver to high-grade gold. Mineralized fluids in the deposit are of high salinity (sodium and calcium chlorides), and rich in As, Sb, Pb, Cu, Zn, and Ag. The Oleninskoe deposit is classified as an epithermal metamorphosed gold deposit.The book is of interest for specialists in economic geology, mineralogy and geochemistry of ore deposits.


Author(s):  
S. A. Tyurina ◽  
S. L. Chavushyan ◽  
A. V. Makarova ◽  
R. E. Khvostov ◽  
G. A. Yudin
Keyword(s):  

This paper examines factors causing the darkening of items made of silver alloys in showcases and storehouses of museums, the authors analyze methods to prevent this undesirable process. The results of studies of different methods for preventing tarnishing of silver alloys are also presented.


Sign in / Sign up

Export Citation Format

Share Document