scholarly journals Single-Loop and Composite-Loop Realization of Nonadiabatic Holonomic Quantum Gates in a Decoherence-Free Subspace

2019 ◽  
Vol 12 (2) ◽  
Author(s):  
Zhennan Zhu ◽  
Tao Chen ◽  
Xiaodong Yang ◽  
Ji Bian ◽  
Zheng-Yuan Xue ◽  
...  
2008 ◽  
Vol 8 (5) ◽  
pp. 468-488
Author(s):  
U. Dorner ◽  
A. Klein ◽  
D. Jaksch

We study a quantum repeater which is based on decoherence free quantum gates recently proposed by Klein {\it et al.} [Phys. Rev. A, {\bf 73}, 012332 (2006)]. A number of operations on the decoherence free subspace in this scheme makes use of an ancilla qubit, which undergoes dephasing and thus introduces decoherence to the system. We examine how this decoherence affects entanglement swapping and purification as well as the performance of a quantum repeater. We compare the decoherence free quantum repeater with a quantum repeater based on qubits that are subject to decoherence and show that it outperforms the latter when decoherence due to long waiting times of conventional qubits becomes significant. Thus, a quantum repeater based on decoherence free subspaces is a possibility to greatly improve quantum communication over long or even intercontinental distances.


2008 ◽  
Author(s):  
Hartmut Häffner ◽  
Kihwan Kim ◽  
Thomas Monz ◽  
Alessandro Villar ◽  
Philipp Schindler ◽  
...  

Optik ◽  
2021 ◽  
Vol 226 ◽  
pp. 165924
Author(s):  
Shantanu Mandal ◽  
Kousik Bishayee ◽  
Arindum Mukherjee ◽  
B N Biswas ◽  
Chandan Kumar Sarkar

2005 ◽  
Vol 128 (6) ◽  
pp. 1261-1271 ◽  
Author(s):  
W. Z. Guo ◽  
R. Du

Single-loop N-bar linkages that contain one prismatic joint are common in engineering. This type of mechanism often requires complicated control and, hence, understanding its mobility is very important. This paper presents a systematic study on the mobility of this type of mechanism by introducing the concept of virtual link. It is found that this type of mechanism can be divided into three categories: Class I, Class II, and Class III. For each category, the slide reachable range is cut into different regions: Grashof region, non-Grashof region, and change-point region. In each region, the rotation range of the revolute joint or rotatability of the linkage can be determined based on Ting’s criteria. The characteristics charts are given to describe the rotatability condition. Furthermore, if the prismatic joint is an active joint, the revolvability of the input revolute joint is dependent in non-Grashof region but independent in other regions. If the prismatic joint is a passive joint, the revolvability of the input revolute joint is dependent on the offset distance of the prismatic joint. Two examples are given to demonstrate the presented method. The new method is able to cover all the cases of N-bar planar linkages with one or a set of adjoined prismatic joints. It can also be used to study N-bar open-loop planar robotic mechanisms.


2013 ◽  
Vol 11 (01) ◽  
pp. 1350015 ◽  
Author(s):  
CHI-KWONG LI ◽  
REBECCA ROBERTS ◽  
XIAOYAN YIN

A general scheme is presented to decompose a d-by-d unitary matrix as the product of two-level unitary matrices with additional structure and prescribed determinants. In particular, the decomposition can be done by using two-level matrices in d - 1 classes, where each class is isomorphic to the group of 2 × 2 unitary matrices. The proposed scheme is easy to apply, and useful in treating problems with the additional structural restrictions. A Matlab program is written to implement the scheme, and the result is used to deduce the fact that every quantum gate acting on n-qubit registers can be expressed as no more than 2n-1(2n-1) fully controlled single-qubit gates chosen from 2n-1 classes, where the quantum gates in each class share the same n - 1 control qubits. Moreover, it is shown that one can easily adjust the proposed decomposition scheme to take advantage of additional structure evolving in the process.


Sign in / Sign up

Export Citation Format

Share Document