scholarly journals Collision-Sensitive Spin Noise

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Shiming Song ◽  
Min Jiang ◽  
Yushu Qin ◽  
Yu Tong ◽  
Wenzhe Zhang ◽  
...  
Keyword(s):  
2008 ◽  
Vol 93 (5) ◽  
pp. 051116 ◽  
Author(s):  
Sebastian Starosielec ◽  
Daniel Hägele

2021 ◽  
Vol 103 (4) ◽  
Author(s):  
A. A. Fomin ◽  
M. Yu. Petrov ◽  
G. G. Kozlov ◽  
A. K. Vershovskii ◽  
M. M. Glazov ◽  
...  
Keyword(s):  

RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8694-8700
Author(s):  
Kousik Chandra ◽  
Samah Al-Harthi ◽  
Sujeesh Sukumaran ◽  
Fatimah Almulhim ◽  
Abdul-Hamid Emwas ◽  
...  

We combined Spin Noise Tuning Optimum (SNTO) and electric field component-optimized shaped tube to boost sensitivity for NMR-based metabolomics.


2014 ◽  
Vol 90 (20) ◽  
Author(s):  
P. Schad ◽  
B. N. Narozhny ◽  
Gerd Schön ◽  
A. Shnirman
Keyword(s):  

2013 ◽  
Vol 88 (4) ◽  
Author(s):  
Dibyendu Roy ◽  
Yan Li ◽  
Alex Greilich ◽  
Yuriy V. Pershin ◽  
Avadh Saxena ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Jian Ma ◽  
Ping Shi ◽  
Xuan Qian ◽  
Yaxuan Shang ◽  
Yang Ji

2021 ◽  
Author(s):  
Li-Ping Yang ◽  
Zubin Jacob

Abstract Classical structured light with controlled polarization and orbital angular momentum (OAM) of electromagnetic waves has varied applications in optical trapping, bio-sensing, optical communications and quantum simulations. The classical electromagnetic theory of such structured light beams and pulses have advanced significantly over the last two decades. However, a framework for the quantum density of spin and OAM for single-photons remains elusive. Here, we develop a theoretical framework and put forth the concept of quantum structured light for space-time wavepackets at the single-photon level. Our work marks a paradigm shift beyond scalar-field theory as well as the paraxial approximation and can be utilized to study the quantum properties of the spin and OAM of all classes of twisted quantum light pulses. We capture the uncertainty in full three-dimensional (3D) projections of vector spin demonstrating their quantum behavior beyond the conventional concept of classical polarization. Even in laser beams with high OAM along the propagation direction, we predict the existence of large OAM quantum fluctuations in the transverse plane which can be verified experimentally. We show that the spin density generates modulated helical texture beyond the paraxial limit and exhibits distinct statistics for Fock-state vs. coherent-state twisted pulses. We introduce the quantum correlator of photon spin density to characterize the nonlocal spin noise providing a rigorous parallel with fermionic spin noise operators. Our work paves the way for quantum spin-OAM physics in twisted single photon pulses and also opens explorations for new phases of light with long-range spin order.


2013 ◽  
Vol 21 (5) ◽  
pp. 5872 ◽  
Author(s):  
Jens Hübner ◽  
Jan Gerrit Lonnemann ◽  
Petrissa Zell ◽  
Hendrik Kuhn ◽  
Fabian Berski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document