scholarly journals Precise measurement of angles between two magnetic moments and their configurational stability in single-molecule magnets

2021 ◽  
Vol 104 (22) ◽  
Author(s):  
Rasmus Westerström ◽  
Vasilii Dubrovin ◽  
Katrin Junghans ◽  
Christin Schlesier ◽  
Bernd Büchner ◽  
...  
2021 ◽  
Author(s):  
Xia-Li Ding ◽  
Qian-Cheng Luo ◽  
Yuan-Qi Zhai ◽  
Xu-Feng Zhang ◽  
Yi Lyu ◽  
...  

Abstract Molecules with long preserved magnetic moments are perceived as the smallest units for storing bytes, which could bring a new revolution for information technology. However, the rational design of such molecules remains challenging. Here we show it is possible to predesign such molecules by studying the vibration spectra. Two adamantanol based dysprosium(III) complexes with pentagonal-bipyramidal local geometry were theoretically predicted to display enhanced single-molecule magnet (SMM) behavior due to the reduced vibration modes in low energy regimes. The experimental isolation of these two complexes not only confirms this prediction, but further reveals almost unchanged large energy barriers and high blocking temperatures in solution state. This is never observed in previous studies of SMMs, indicating that the adamantanol ligand is rigid enough to make the complexes exhibiting intrinsic magnetic property in solution. As vibration spectrometer is routinely accessible in common laboratories this work provides a facile strategy to construct high-performance SMMs.


2019 ◽  
Author(s):  
Guo-Zhang Huang ◽  
Ze-Yu Ruan ◽  
Jie-Yu Zheng ◽  
Yan-Cong Chen ◽  
Si-Guo Wu ◽  
...  

<p><a></a>Controlling molecular magnetic anisotropy via structural engineering is delicate and fascinating, especially for single-molecule magnets (SMMs). Herein a family of dysprosium single-ion magnets (SIMs) sitting in pentagonal bipyramid geometry have been synthesized with the variable-size terminal ligands and counter anions, through which the subtle coordination geometry of Dy(III) can be finely tuned based on the size effect. The effective energy barrier (Ueff) successfully increases from 439 K to 632 K and the magnetic hysteresis temperature (under a 200 Oe/s sweep rate) raises from 11 K to 24 K. Based on the crystal-field theory, a semi-quantitative magneto-structural correlation deducing experimentally for the first time is revealed that the Ueff is linearly proportional to the structural-related value S2<sup>0</sup> corresponding to the axial coordination bond lengths and the bond angles. Through the evaluation of the remanent magnetization from hysteresis, quantum tunneling of magnetization (QTM) is found to exhibit negative correlation with the structural-related value S<sub>tun</sub> corresponding to the axial coordination bond angles.<br></p>


2018 ◽  
Author(s):  
Marcus J. Giansiracusa ◽  
Andreas Kostopoulos ◽  
George F. S. Whitehead ◽  
David Collison ◽  
Floriana Tuna ◽  
...  

We report a six coordinate DyIII single-molecule magnet<br>(SMM) with an energy barrier of 1110 K for thermal relaxation of<br>magnetization. The sample shows no retention of magnetization<br>even at 2 K and this led us to find a good correlation between the<br>blocking temperature and the Raman relaxation regime for SMMs.<br>The key parameter is the relaxation time (𝜏<sub>switch</sub>) at the point where<br>the Raman relaxation mechanism becomes more important than<br>Orbach.


2018 ◽  
Author(s):  
Shannon Houck ◽  
Nicholas Mayhall

<div>Many multiconfigurational systems, such as single-molecule magnets, are difficult to study using traditional computational methods due to the simultaneous existence of both spin and spatial degeneracies. In this work, a new approach termed n-spin-flip Ionization Potential/Electron Affinity (<i>n</i>SF-IP or <i>n</i>SF-EA) is introduced which combines the spin-flip method of Anna Krylov with particle-number changing IP/EA methods. We demonstrate the efficacy of the approach by applying it to the strongly-correlated N<sub>2</sub><sup>+</sup> as well as several double exchange systems. We also demonstrate that when these systems are well-described by a double exchange model Hamiltonian, only 1SF-IP/EA is required to extract the double exchange parameters and accurately predict energies for the low-spin states. This significantly reduces the computational effort for studying such systems. The effects of including additional excitations (using a RAS-<i>n</i>SF-IP/EA scheme) are also examined, with particular emphasis on hole and particle excitations.</div>


2018 ◽  
Author(s):  
Shannon Houck ◽  
Nicholas Mayhall

<div>Many multiconfigurational systems, such as single-molecule magnets, are difficult to study using traditional computational methods due to the simultaneous existence of both spin and spatial degeneracies. In this work, a new approach termed n-spin-flip Ionization Potential/Electron Affinity (<i>n</i>SF-IP or <i>n</i>SF-EA) is introduced which combines the spin-flip method of Anna Krylov with particle-number changing IP/EA methods. We demonstrate the efficacy of the approach by applying it to the strongly-correlated N<sub>2</sub><sup>+</sup> as well as several double exchange systems. We also demonstrate that when these systems are well-described by a double exchange model Hamiltonian, only 1SF-IP/EA is required to extract the double exchange parameters and accurately predict energies for the low-spin states. This significantly reduces the computational effort for studying such systems. The effects of including additional excitations (using a RAS-<i>n</i>SF-IP/EA scheme) are also examined, with particular emphasis on hole and particle excitations.</div>


2013 ◽  
Vol 3 (2) ◽  
pp. 101-111 ◽  
Author(s):  
Peng Zhang ◽  
Li Zhang ◽  
Jinkui Tang

Author(s):  
Jean-Pierre Launay ◽  
Michel Verdaguer

After preliminaries about electron properties, and definitions in magnetism, one treats the magnetism of mononuclear complexes, in particular spin cross-over, showing the role of cooperativity and the sensitivity to external perturbations. Orbital interactions and exchange interaction are explained in binuclear model systems, using orbital overlap and orthogonality concepts to explain antiferromagnetic or ferromagnetic coupling. The phenomenologically useful Spin Hamiltonian is defined. The concepts are then applied to extended molecular magnetic systems, leading to molecular magnetic materials of various dimensionalities exhibiting bulk ferro- or ferrimagnetism. An illustration is provided by Prussian Blue analogues. Magnetic anisotropy is introduced. It is shown that in some cases, a slow relaxation of magnetization arises and gives rise to appealing single-ion magnets, single-molecule magnets or single-chain magnets, a route to store information at the molecular level.


2014 ◽  
Vol 89 (6) ◽  
Author(s):  
Rasmus Westerström ◽  
Jan Dreiser ◽  
Cinthia Piamonteze ◽  
Matthias Muntwiler ◽  
Stephen Weyeneth ◽  
...  

2021 ◽  
Vol 50 (6) ◽  
pp. 2102-2111
Author(s):  
Jing Xi ◽  
Xiufang Ma ◽  
Peipei Cen ◽  
Yuewei Wu ◽  
Yi-Quan Zhang ◽  
...  

Substituent change modulates the coordination symmetries and magnetic dynamics of five mononuclear β-diketonate-Dy(iii) complexes with capping N-donor coligands, which is studied by the combination of magnetic investigation and ab initio calculation.


Sign in / Sign up

Export Citation Format

Share Document