coordination bond
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 34)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Jinhee Bae ◽  
Sun Ho Park ◽  
Dohyun Moon ◽  
Nak Cheon Jeong

Abstract Hydrogen bond (H-bond) of water molecules confined in nanopores is of particular interest because it is expected to exhibit chemical features different from bulk water molecules due to its interaction with the wall lining the pores. Herein, we show a crystalline behavior of hydrogen-bonded water molecules residing in the nanocages of a paddlewheel metal-organic framework, providing in situ and ex situ synchrotron single-crystal X-ray diffraction and Raman spectroscopy studies. The crystalline H-bond is demonstrated by proving the vibrational chain connectivity arising between hydrogen bonding and paddlewheel Cu−Cu bonding in sequentially connected Cu–Cu⋅⋅⋅⋅⋅coordinating H2O⋅⋅⋅⋅⋅H-bonded H2O and proving the spatial ordering of H-bonded water molecules at room temperature, where they are anticipated to be disordered with a high degree of freedom in their molecular motions. Additionally, we show a substantial distortion of the paddlewheel Cu2+ centers that arises simultaneously with water coordination. Also, we suggest the dynamic coordination bond character of the H-bond of the confined water molecules, by which an H-bond transitions to a coordination bond at the Cu2+ center instantaneously after dissociating a previously coordinated water molecule.


Inorganics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 10
Author(s):  
Takayuki Ishida ◽  
Saki Ito ◽  
Yuta Homma ◽  
Yukiya Kyoden

Heterospin systems have a great advantage in frontier orbital engineering since they utilize a wide diversity of paramagnetic chromophores and almost infinite combinations and mutual geometries. Strong exchange couplings are expected in 3d–2p heterospin compounds, where the nitroxide (aminoxyl) oxygen atom has a direct coordination bond with a nickel(II) ion. Complex formation of nickel(II) salts and tert-butyl 2-pyridyl nitroxides afforded a discrete 2p–3d–2p triad. Ferromagnetic coupling is favored when the magnetic orbitals, nickel(II) dσ and radical π*, are arranged in a strictly orthogonal fashion, namely, a planar coordination structure is characterized. In contrast, a severe twist around the coordination bond gives an orbital overlap, resulting in antiferromagnetic coupling. Non-chelatable nitroxide ligands are available for highly twisted and practically diamagnetic complexes. Here, the Ni–O–N–Csp2 torsion (dihedral) angle is supposed to be a useful metric to describe the nickel ion dislocated out of the radical π* nodal plane. Spin-transition complexes exhibited a planar coordination structure in a high-temperature phase and a nonplanar structure in a low-temperature phase. The gradual spin transition is described as a spin equilibrium obeying the van’t Hoff law. Density functional theory calculation indicates that the energy level crossing of the high- and low-spin states. The optimized structures of diamagnetic and high-spin states well agreed with the experimental large and small torsions, respectively. The novel mechanism of the present spin transition lies in the ferro-/antiferromagnetic coupling switch. The entropy-driven mechanism is plausible after combining the results of the related copper(II)-nitroxide compounds. Attention must be paid to the coupling parameter J as a variable of temperature in the magnetic analysis of such spin-transition materials. For future work, the exchange coupling may be tuned by chemical modification and external stimulus, because it has been clarified that the parameter is sensitive to the coordination structure and actually varies from 2J/kB = +400 K to −1400 K.


Author(s):  
Xu Zhang ◽  
Shixuan Yang ◽  
yuhan Tian ◽  
Anmin Liu ◽  
wang Lu ◽  
...  

The dopamine (DA) constructed strategy is reported for designing the high performance 2D NiCo-hydroxide nanosheets/graphene@polydopamine (NiCo-OH/G@PDA) composite. The strong coordination bond energies between the dopamine and metal ions are crucial...


Sign in / Sign up

Export Citation Format

Share Document