X-ray-edge problem in metals. II. Alkali-metal atoms adsorbed on alkali and other metal surfaces

1985 ◽  
Vol 32 (2) ◽  
pp. 602-611 ◽  
Author(s):  
Doon Gibbs ◽  
T.-H. Chiu ◽  
J. E. Cunningham ◽  
C. P. Flynn
2021 ◽  
Vol 47 (10) ◽  
pp. 670-678
Author(s):  
A. G. Medvedev ◽  
M. Yu. Sharipov ◽  
A. A. Mikhaylov ◽  
D. A. Grishanov ◽  
A. V. Churakov ◽  
...  

Abstract Sodium and potassium tert-butyl peroxide hydrates 2Na+·2C4H9$${\text{O}}_{2}^{ - }$$·7H2O (I) and 2K+· 2C4H9$${\text{O}}_{2}^{ - }$$·4H2O (II) were prepared. According to X-ray diffraction data (CIF files CCDC no. 2081025 (I) and no. 2081024 (II)), the compounds are coordination polymers in which alkali metal atoms have C.N.(Na) of 6 or C.N.(K) of 6 and 8. The crystal packings comprise layers with clearly defined hydrophobic surfaces consisting of hydrocarbon groups and hydrophilic inner areas including water molecules, alkali metal cations, and peroxy groups of the tert-butyl peroxide anions. Compounds were characterized by vibrational spectroscopy, 1H, 13C NMR spectroscopy, thermogravimetry, and differential scanning calorimetry.


1993 ◽  
Vol 47 (7) ◽  
pp. 4014-4017 ◽  
Author(s):  
X. Shi ◽  
D. Tang ◽  
D. Heskett ◽  
K.-D. Tsuei ◽  
H. Ishida ◽  
...  

1996 ◽  
Vol 52 (3) ◽  
pp. 414-422 ◽  
Author(s):  
E. N. Maslen ◽  
V. A. Streltsov ◽  
N. Ishizawa

Structure factors for small synthetic crystals of the C-type rare earth (RE) sesquioxides Y2O3, Dy2O3 and Ho2O3 were measured with focused λ = 0.7000 (2) Å, synchrotron X-radiation, and for Ho2O3 were re-measured with an MoKα (λ = 0.71073 Å) source. Approximate symmetry in the deformation electron density (Δρ) around a RE atom with pseudo-octahedral O coordination matches the cation geometry. Interactions between heavy metal atoms have a pronounced effect on the Δρ map. The electron-density symmetry around a second RE atom is also perturbed significantly by cation–anion interactions. The compounds magnetic properties reflect this complexity. Space group Ia{\bar 3}, cubic, Z = 16, T = 293 K: Y2O3, Mr = 225.82, a = 10.5981 (7) Å, V = 1190.4 (2) Å3, Dx = 5.040 Mg m−3, μ 0.7 = 37.01 mm−1, F(000) = 1632, R = 0.067, wR = 0.067, S = 9.0 (2) for 1098 unique reflections; Dy2O3, Mr = 373.00, a = 10.6706 (7) Å, V = 1215.0 (2) Å3, Dx = 8.156 Mg m−3, μ 0.7 = 44.84 mm−1, F(000) = 2496, R = 0.056, wR = 0.051, S = 7.5 (2) for 1113 unique reflections; Ho2O3, Mr = 377.86, a = 10.606 (2) Å, V = 1193.0 (7) Å3, Dx = 8.415 Mg m−3, μ 0.7 = 48.51 mm−1 F(000) = 2528, R = 0.072, wR = 0.045, S = 9.2 (2) for 1098 unique reflections of the synchrotron data set.


1992 ◽  
Vol 47 (10) ◽  
pp. 1351-1354 ◽  
Author(s):  
Viktor Keimes ◽  
Albrecht Mewis

The compounds Mg2Ni3P and Mg2Ni3As were prepared by heating the elements. Their structures have been determined from single-crystal X-ray data. The structure of the phosphide is a rhombohedral ternary variant of the cubic Laves structure type MgCu2 (R 3̄ m; hexagonal lattice constants: a = 4.971(0) Å, c = 10.961(2) Å). The ordered substitution of one quarter of the metal atoms by phosphorus and the resulting shorter distances are responsible for the rhombohedral symmetry.The arsenide crystallizes in the MgCu2 type structure (Fd 3 m; a = 6.891(1)A, composition Mg2Ni3As) with a statistic distribution of the Ni and As atoms; the relevant homogeneity range extends from Mg2Ni2.9As1.1 to Mg2Ni3.5As0.5.


Sign in / Sign up

Export Citation Format

Share Document