scholarly journals Topological BF theory of the quantum hydrodynamics of incompressible polar fluids

2014 ◽  
Vol 90 (23) ◽  
Author(s):  
Apoorv Tiwari ◽  
Xiao Chen ◽  
Titus Neupert ◽  
Luiz H. Santos ◽  
Shinsei Ryu ◽  
...  
2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Remigiusz Durka ◽  
Jerzy Kowalski-Glikman

Abstract Following recent works on corner charges we investigate the boundary structure in the case of the theory of gravity formulated as a constrained BF theory. This allows us not only to introduce the cosmological constant, but also explore the influence of the topological terms present in the action of this theory. Established formulas for charges resemble previously obtained ones, but we show that they are affected by the presence of the cosmological constant and topological terms. As an example we discuss the charges in the case of the AdS-Schwarzschild solution and we find that the charges give correct values.


2021 ◽  
Vol 76 (4) ◽  
pp. 329-347
Author(s):  
Swarniv Chandra ◽  
Chinmay Das ◽  
Jit Sarkar

Abstract In this paper we have studied the gradual evolution of stationary formations in electron acoustic waves at a finite temperature quantum plasma. We have made use of Quantum hydrodynamics model equations and obtained the KdV-Burgers equation. From here we showed how the amplitude modulated solitons evolve from double layer structures through shock fronts and ultimately converging into solitary structures. We have studied the various parametric influences on such stationary structure and also showed how the gradual variations of these parameter affect the transition from one form to another. The results thus obtained will help in the generation and structure of the structures in their respective domain. Much of the experiments on dense plasma will benefit from the parametric study. Further we have studied amplitude modulation followed by a detailed study on chaos.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Fridrich Valach ◽  
Donald R. Youmans

Abstract We give an interpretation of the holographic correspondence between two-dimensional BF theory on the punctured disk with gauge group PSL(2, ℝ) and Schwarzian quantum mechanics in terms of a Drinfeld-Sokolov reduction. The latter, in turn, is equivalent to the presence of certain edge states imposing a first class constraint on the model. The constrained path integral localizes over exceptional Virasoro coadjoint orbits. The reduced theory is governed by the Schwarzian action functional generating a Hamiltonian S1-action on the orbits. The partition function is given by a sum over topological sectors (corresponding to the exceptional orbits), each of which is computed by a formal Duistermaat-Heckman integral.


1981 ◽  
Vol 75 (9) ◽  
pp. 4707-4718 ◽  
Author(s):  
Jayendran C. Rasaiah ◽  
Dennis J. Isbister ◽  
George Stell

2014 ◽  
Vol 80 (4) ◽  
pp. 643-652 ◽  
Author(s):  
Erik Wallin ◽  
Jens Zamanian ◽  
Gert Brodin

The theory for nonlinear three-wave interaction in magnetized plasmas is reconsidered using quantum hydrodynamics. The general coupling coefficients are calculated for the generalized Bohm de Broglie term. It is found that the Manley–Rowe relations are fulfilled only if the form of the particle dispersive term coincides with the standard expression. The implications of our results are discussed.


Sign in / Sign up

Export Citation Format

Share Document