scholarly journals Generalized Dyson model: Nature of the zero mode and its implication in dynamics

2016 ◽  
Vol 94 (14) ◽  
Author(s):  
Giuseppe De Tomasi ◽  
Sthitadhi Roy ◽  
Soumya Bera
Keyword(s):  
2017 ◽  
Vol 137 (6) ◽  
pp. 159-164
Author(s):  
Kazuya Fujimoto ◽  
Yuki Morita ◽  
Ryota Iino ◽  
Michio Tomishige ◽  
Hirofumi Shintaku ◽  
...  
Keyword(s):  

2020 ◽  
Vol 102 (11) ◽  
Author(s):  
Shohini Bhattacharya ◽  
Krzysztof Cichy ◽  
Martha Constantinou ◽  
Andreas Metz ◽  
Aurora Scapellato ◽  
...  
Keyword(s):  

2021 ◽  
Vol 103 (10) ◽  
Author(s):  
Vladimir Toussaint ◽  
Jorma Louko
Keyword(s):  

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Yahya Almumin ◽  
Mu-Chun Chen ◽  
Víctor Knapp-Pérez ◽  
Saúl Ramos-Sánchez ◽  
Michael Ratz ◽  
...  

Abstract We revisit the flavor symmetries arising from compactifications on tori with magnetic background fluxes. Using Euler’s Theorem, we derive closed form analytic expressions for the Yukawa couplings that are valid for arbitrary flux parameters. We discuss the modular transformations for even and odd units of magnetic flux, M, and show that they give rise to finite metaplectic groups the order of which is determined by the least common multiple of the number of zero-mode flavors involved. Unlike in models in which modular flavor symmetries are postulated, in this approach they derive from an underlying torus. This allows us to retain control over parameters, such as those governing the kinetic terms, that are free in the bottom-up approach, thus leading to an increased predictivity. In addition, the geometric picture allows us to understand the relative suppression of Yukawa couplings from their localization properties in the compact space. We also comment on the role supersymmetry plays in these constructions, and outline a path towards non-supersymmetric models with modular flavor symmetries.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Robert Konik ◽  
Márton Lájer ◽  
Giuseppe Mussardo

Abstract One of the most striking but mysterious properties of the sinh-Gordon model (ShG) is the b → 1/b self-duality of its S-matrix, of which there is no trace in its Lagrangian formulation. Here b is the coupling appearing in the model’s eponymous hyperbolic cosine present in its Lagrangian, cosh(bϕ). In this paper we develop truncated spectrum methods (TSMs) for studying the sinh-Gordon model at a finite volume as we vary the coupling constant. We obtain the expected results for b ≪ 1 and intermediate values of b, but as the self-dual point b = 1 is approached, the basic application of the TSM to the ShG breaks down. We find that the TSM gives results with a strong cutoff Ec dependence, which disappears according only to a very slow power law in Ec. Standard renormalization group strategies — whether they be numerical or analytic — also fail to improve upon matters here. We thus explore three strategies to address the basic limitations of the TSM in the vicinity of b = 1. In the first, we focus on the small-volume spectrum. We attempt to understand how much of the physics of the ShG is encoded in the zero mode part of its Hamiltonian, in essence how ‘quantum mechanical’ vs ‘quantum field theoretic’ the problem is. In the second, we identify the divergencies present in perturbation theory and perform their resummation using a supra-Borel approximate. In the third approach, we use the exact form factors of the model to treat the ShG at one value of b as a perturbation of a ShG at a different coupling. In the light of this work, we argue that the strong coupling phase b > 1 of the Lagrangian formulation of model may be different from what is naïvely inferred from its S-matrix. In particular, we present an argument that the theory is massless for b > 1.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lingyuan Kong ◽  
Lu Cao ◽  
Shiyu Zhu ◽  
Michał Papaj ◽  
Guangyang Dai ◽  
...  

AbstractThe iron-based superconductor is emerging as a promising platform for Majorana zero mode, which can be used to implement topological quantum computation. One of the most significant advances of this platform is the appearance of large vortex level spacing that strongly protects Majorana zero mode from other low-lying quasiparticles. Despite the advantages in the context of physics research, the inhomogeneity of various aspects hampers the practical construction of topological qubits in the compounds studied so far. Here we show that the stoichiometric superconductor LiFeAs is a good candidate to overcome this obstacle. By using scanning tunneling microscopy, we discover that the Majorana zero modes, which are absent on the natural clean surface, can appear in vortices influenced by native impurities. Our detailed analysis reveals a new mechanism for the emergence of those Majorana zero modes, i.e. native tuning of bulk Dirac fermions. The discovery of Majorana zero modes in this homogeneous material, with a promise of tunability, offers an ideal material platform for manipulating and braiding Majorana zero modes, pushing one step forward towards topological quantum computation.


2014 ◽  
Vol 113 (2) ◽  
Author(s):  
Thomas Auger ◽  
Jérôme Mathé ◽  
Virgile Viasnoff ◽  
Gaëlle Charron ◽  
Jean-Marc Di Meglio ◽  
...  
Keyword(s):  

1998 ◽  
Vol 13 (07) ◽  
pp. 1059-1089 ◽  
Author(s):  
JOHN ELLIS ◽  
N. E. MAVROMATOS ◽  
D. V. NANOPOULOS

We discuss the scattering of a light closed-string state off a D-brane, taking into account quantum recoil effects on the latter, which are described by a pair of logarithmic operators. The light particle and D-brane subsystems may each be described by a world sheet with an external source due to the interaction between them. This perturbs each subsystem away from criticality, which is compensated by dressing with a Liouville field whose zero mode we interpret as time. The resulting evolution equations for the D-brane and the closed string are of Fokker–Planck and modified quantum Liouville type, respectively. The apparent entropy of each subsystem increases as a result of the interaction between them, which we interpret as the loss of information resulting from nonobservation of the other entangled subsystem. We speculate on the possible implications of these results for the propagation of closed strings through a dilute gas of virtual D-branes.


Sign in / Sign up

Export Citation Format

Share Document