scholarly journals Spatially resolved electronic structure of an isovalent nitrogen center in GaAs

2017 ◽  
Vol 96 (15) ◽  
Author(s):  
R. C. Plantenga ◽  
V. R. Kortan ◽  
T. Kaizu ◽  
Y. Harada ◽  
T. Kita ◽  
...  
Author(s):  
S.J. Splinter ◽  
J. Bruley ◽  
P.E. Batson ◽  
D.A. Smith ◽  
R. Rosenberg

It has long been known that the addition of Cu to Al interconnects improves the resistance to electromigration failure. It is generally accepted that this improvement is the result of Cu segregation to Al grain boundaries. The exact mechanism by which segregated Cu increases service lifetime is not understood, although it has been suggested that the formation of thin layers of θ-CuA12 (or some metastable substoichiometric precursor, θ’ or θ”) at the boundaries may be necessary. This paper reports measurements of the local electronic structure of Cu atoms segregated to Al grain boundaries using spatially resolved EELS in a UHV STEM. It is shown that segregated Cu exists in a chemical environment similar to that of Cu atoms in bulk θ-phase precipitates.Films of 100 nm thickness and nominal composition Al-2.5wt%Cu were deposited by sputtering from alloy targets onto NaCl substrates. The samples were solution heat treated at 748K for 30 min and aged at 523K for 4 h to promote equilibrium grain boundary segregation. EELS measurements were made using a Gatan 666 PEELS spectrometer interfaced to a VG HB501 STEM operating at 100 keV. The probe size was estimated to be 1 nm FWHM. Grain boundaries with the narrowest projected width were chosen for analysis. EDX measurements of Cu segregation were made using a VG HB603 STEM.


1998 ◽  
Vol 13 (9) ◽  
pp. 2389-2395 ◽  
Author(s):  
D. L. Carroll ◽  
P. M. Ajayan ◽  
S. Curran

The recent application of tunneling probes in electronic structure studies of carbon nanotubes has proven both powerful and challenging. Using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS), local electronic properties in ordered aggregates of carbon nanotubes (multiwalled nanotubes and ropes of single walled nanotubes) have been probed. In this report, we present evidence for interlayer (concentric tube) interactions in multiwalled tubes and tube-tube interactions in singlewalled nanotube ropes. The spatially resolved, local electronic structure, as determined by the local density of electronic states, is shown to clearly reflect tube-tube interactions in both of these aggregate forms.


2009 ◽  
Vol 206 (5) ◽  
pp. 1017-1020 ◽  
Author(s):  
R. Mainz ◽  
F. Streicher ◽  
D. Abou-Ras ◽  
S. Sadewasser ◽  
R. Klenk ◽  
...  

Nanoscale ◽  
2015 ◽  
Vol 7 (5) ◽  
pp. 1718-1724 ◽  
Author(s):  
Jian Wang ◽  
Zhiqiang Wang ◽  
Hyunjin Cho ◽  
Myung Jong Kim ◽  
T. K. Sham ◽  
...  

Layer speciation, spatially-resolved XANES spectroscopy and polarization dependence of single and multilayered hBN nanosheets have been investigated by STXM.


1997 ◽  
Vol 482 ◽  
Author(s):  
M. K. H. Natusch ◽  
G. A. Botton ◽  
R. F. Broom ◽  
P. D. Brown ◽  
D. M. Tricker ◽  
...  

AbstractThe optical properties and their modification by crystal defects of wurtzite GaN are investigated using spatially resolved electron energy-loss spectroscopy (EELS) in a dedicated ultra-high vacuum field emission gun scanning transmission electron microscope. The calculated density of states of the bulk crystal reproduces well the features of the measured spectra. The profound effect of a prismatic stacking fault on the local electronic structure is shown by the spatial variation of the optical properties derived from low-loss spectra. It is found that a defect state at the fault appears to bind 1.5 electrons per atom.


APL Materials ◽  
2014 ◽  
Vol 2 (12) ◽  
pp. 120701 ◽  
Author(s):  
Alex Belianinov ◽  
Panchapakesan Ganesh ◽  
Wenzhi Lin ◽  
Brian C. Sales ◽  
Athena S. Sefat ◽  
...  

1993 ◽  
Vol 319 ◽  
Author(s):  
D.A. Muller ◽  
P.E. Batson ◽  
S. Subramanian ◽  
S. L. Sass ◽  
J. Silcox

AbstractWe have examined grain boundaries in both undoped and boron doped Ni0.76Al0.24 using electron energy loss spectroscopy (EELS), x-ray fluorescence (EDX) and annular dark field (ADF) imaging in a UHV STEM. A detailed study of a high angle grain boundary in nickel rich Ni3Al doped with 1000 ppm boron shows nickel enrichment occurring in a 5Å wide region. Boron segregation to the boundary is observed with EELS and is seen to vary along the boundary, coinciding with ADF contrast changes in the surrounding grains that may be due to local strain fields. Spatially resolved EELS of the Ni L2,3 core edge, which is sensitive to changes in the hole density in the nickel d band, shows boron rich regions of the grain boundary to have a bonding similar to that of the bulk material. Boundary regions without boron have an electronic structure similar to that of the undoped grain boundaries where the Fermi level lies deeper in the nickel d band. In addition to studying boron segregation, EELS provides a unique opportunity to examine the changes in bonding that control the local properties of the material.


2006 ◽  
Vol 12 (S02) ◽  
pp. 1156-1157
Author(s):  
Q Li ◽  
J Dai ◽  
X Gong

Extended abstract of a paper presented at Microscopy and Microanalysis 2006 in Chicago, Illinois, USA, July 30 – August 3, 2006


Sign in / Sign up

Export Citation Format

Share Document