scholarly journals Measurements of proton capture in the A=100–110 mass region: Constraints on the In111(γ,p)/(γ,n) branching point relevant to the γ process

2020 ◽  
Vol 102 (5) ◽  
Author(s):  
O. Olivas-Gomez ◽  
A. Simon ◽  
O. Gorton ◽  
J. E. Escher ◽  
E. Churchman ◽  
...  
2015 ◽  
Vol 91 (2) ◽  
Author(s):  
Saumi Dutta ◽  
Dipti Chakraborty ◽  
G. Gangopadhyay ◽  
Abhijit Bhattacharyya

2021 ◽  
pp. 122298
Author(s):  
P. Vasileiou ◽  
T.J. Mertzimekis ◽  
A. Chalil ◽  
C. Fakiola ◽  
I. Karakasis ◽  
...  
Keyword(s):  

1998 ◽  
Vol 115 (4) ◽  
pp. 1500-1515 ◽  
Author(s):  
Robert P. Kraft ◽  
Christopher Sneden ◽  
Graeme H. Smith ◽  
Matthew D. Shetrone ◽  
Jon Fulbright

2021 ◽  
Vol 103 (1) ◽  
Author(s):  
G. D'Agata ◽  
A. I. Kilic ◽  
V. Burjan ◽  
J. Mrazek ◽  
V. Glagolev ◽  
...  

Author(s):  
Kiseki D Nakamura ◽  
Kentaro Miuchi ◽  
Shingo Kazama ◽  
Yutaro Shoji ◽  
Masahiro Ibe ◽  
...  

Abstract Migdal effect is attracting interests because of the potential to enhance the sensitivities of direct dark matter searches to the low mass region. In spite of its great importance, the Migdal effect has not been experimentally observed yet. A realistic experimental approach towards the first observation of the Migdal effect in the neutron scattering was studied with Monte Carlo simulations. In this study, potential background rate was studied together with the event rate of the Migdal effect by a neutron source. It was found that a table-top sized ~ (30cm)3 position-sensitive gaseous detector filled with argon or xenon target gas can detect characteristic signatures of the Migdal effect with sufficient rates (O(102 ~ 103) events/day). A simulation result of a simple experimental set-up showed two significant background sources, namely the intrinsic neutrons and the neutron induced gamma-rays. It is found that the intrinsic neutron background rate for the argon gas is acceptable level and some future study for the reduction of the gamma-rays from the laboratory would make the observation of the Migdal effect possible. The background for the xenon gas, on the other hand, is found to be much more serious than for the argon gas. Future works on the isotope separation as well as the reduction of the gamma-rays from the detector and laboratory will be needed before the Migdal effect observation for xenon gas case.


2021 ◽  
Vol 11 (9) ◽  
pp. 4048
Author(s):  
Javier A. Linares-Pastén ◽  
Lilja Björk Jonsdottir ◽  
Gudmundur O. Hreggvidsson ◽  
Olafur H. Fridjonsson ◽  
Hildegard Watzlawick ◽  
...  

The structures of glycoside hydrolase family 17 (GH17) catalytic modules from modular proteins in the ndvB loci in Pseudomonas aeruginosa (Glt1), P. putida (Glt3) and Bradyrhizobium diazoefficiens (previously B. japonicum) (Glt20) were modeled to shed light on reported differences between these homologous transglycosylases concerning substrate size, preferred cleavage site (from reducing end (Glt20: DP2 product) or non-reducing end (Glt1, Glt3: DP4 products)), branching (Glt20) and linkage formed (1,3-linkage in Glt1, Glt3 and 1,6-linkage in Glt20). Hybrid models were built and stability of the resulting TIM-barrel structures was supported by molecular dynamics simulations. Catalytic amino acids were identified by superimposition of GH17 structures, and function was verified by mutagenesis using Glt20 as template (i.e., E120 and E209). Ligand docking revealed six putative subsites (−4, −3, −2, −1, +1 and +2), and the conserved interacting residues suggest substrate binding in the same orientation in all three transglycosylases, despite release of the donor oligosaccharide product from either the reducing (Glt20) or non-reducing end (Glt1, Gl3). Subsites +1 and +2 are most conserved and the difference in release is likely due to changes in loop structures, leading to loss of hydrogen bonds in Glt20. Substrate docking in Glt20 indicate that presence of covalently bound donor in glycone subsites −4 to −1 creates space to accommodate acceptor oligosaccharide in alternative subsites in the catalytic cleft, promoting a branching point and formation of a 1,6-linkage. The minimum donor size of DP5, can be explained assuming preferred binding of DP4 substrates in subsite −4 to −1, preventing catalysis.


Proteomes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Alaa Hseiky ◽  
Marion Crespo ◽  
Sylvie Kieffer-Jaquinod ◽  
François Fenaille ◽  
Delphine Pflieger

(1) Background: The proteomic analysis of histones constitutes a delicate task due to the combination of two factors: slight variations in the amino acid sequences of variants and the multiplicity of post-translational modifications (PTMs), particularly those occurring on lysine residues. (2) Methods: To dissect the relationship between both aspects, we carefully evaluated PTM identification on lysine 27 from histone H3 (H3K27) and the artefactual chemical modifications that may lead to erroneous PTM determination. H3K27 is a particularly interesting example because it can bear a range of PTMs and it sits nearby residues 29 and 31 that vary between H3 sequence variants. We discuss how the retention times, neutral losses and immonium/diagnostic ions observed in the MS/MS spectra of peptides bearing modified lysines detectable in the low-mass region might help validate the identification of modified sequences. (3) Results: Diagnostic ions carry key information, thereby avoiding potential mis-identifications due to either isobaric PTM combinations or isobaric amino acid-PTM combinations. This also includes cases where chemical formylation or acetylation of peptide N-termini artefactually occurs during sample processing or simply in the timeframe of LC-MS/MS analysis. Finally, in the very subtle case of positional isomers possibly corresponding to a given mass of lysine modification, the immonium and diagnostic ions may allow the identification of the in vivo structure.


2019 ◽  
Vol 35 (08) ◽  
pp. 2050045
Author(s):  
Pardeep Singh ◽  
Monika Singh ◽  
Neha Rani

The nuclear isotopic structure can be understood easily via the intermediate-energy charge exchange reactions of (p, n) and [Formula: see text]He, [Formula: see text] type. In the current contribution, we present some results for charge exchange reactions induced by 3He on targets lying in mass region [Formula: see text] within the theoretical framework of plane wave impulse approximation (PWIA) and distorted wave impulse approximation (DWIA). Here, the recoil effects in PWIA have also been considered. Particularly, the angular distributions and the unit cross-sections have been calculated and compared with the available data. Further, the importance of inclusion of the exchange contribution in these reactions is also considered, which eventually enhance the matching with data.


2011 ◽  
Vol 20 (08) ◽  
pp. 1663-1675 ◽  
Author(s):  
A. BHAGWAT ◽  
Y. K. GAMBHIR

Systematic investigations of the pairing and two-neutron separation energies which play a crucial role in the evolution of shell structure in nuclei, are carried out within the framework of relativistic mean-field model. The shell closures are found to be robust, as expected, up to the lead region. New shell closures appear in low mass region. In the superheavy region, on the other hand, it is found that the shell closures are not as robust, and they depend on the particular combinations of neutron and proton numbers. Effect of deformation on the shell structure is found to be marginal.


Sign in / Sign up

Export Citation Format

Share Document